
EXPERIMENTAL AND THERAPEUTIC MEDICINE  16:  3143-3148,  2018

Abstract. The radioprotective effect of lactoferrin (LF) was 
studied in mice subjected to sublethal X‑ray irradiation. The 
mice were randomly divided into the Control (non‑irradiated 
mice fed a standard diet without LF), IR (irradiated mice fed 
a standard diet) and IR+LF (irradiated mice fed LF) groups. 
The mice were fed daily for 7 days prior to irradiation and for 
30 continuous days following irradiation. The survival ratio 
of the mice in the IR+LF group was significantly increased 
compared with the IR group between days 15 and 30 after 
irradiation. The body weight of the mice in the IR+LF 
group was increased compared with the IR group, and the 
difference was statistically significant. Blood was collected 
from the mice via the tail vein on days 2, 7, 14, 21 and 30 
following irradiation. The laboratory indicators, including 
leukocyte, erythrocyte and platelet counts recovered more 
rapidly following irradiation in the IR+LF group compared 
with the IR group. Treatment of the irradiated mice with LF 
significantly reduced the DNA damage. In the hepatic tissue 
the level of superoxide dismutase in the IR+LF group was 
significantly increased, while malondialdehyde was signifi-
cantly decreased compared with the IR group. These findings 
indicate that LF may prevent radiation damage and may have 
potential as a treatment for patients with cancer who receive 
radiotherapy.

Introduction

Radiotherapy is a common treatment method for a number of 
types of human cancer, with approximately half of all patients 
requiring radiotherapy for palliative or curative purposes (1). 
However, patients undergoing radiotherapy may develop 
adverse side‑effects, including hematological toxicity, cyto-
penia, immune suppression and mucosal damage (2). Under 
ideal conditions, tumor tissue would receive a large dose of 
radiation, while normal healthy tissues would be protected 
from radiation injury. Therefore, the pathogenic processes 
induced by ionizing radiation and non‑toxic radioprotective 
compounds that may protect normal tissues against radiation 
injury, are currently being extensively researched (3‑5). Several 
compounds, including cysteine, aminothiol and cytokines, are 
known radioprotectors (6‑8). Crescenti et al (9) reported that 
selenium, zinc and magnesium may also have radioprotec-
tive properties. Nishimura et al (10) reported that chitosan 
increased the hematocrit and survival rate in mice exposed to 
sublethal X‑ray irradiation. Emami et al (11) reported that zinc 
exerted a protective effect against lethality in irradiated mice.

Lactoferrin (LF) is an 80 kDa iron‑binding glycoprotein, 
which is a component of exocrine secretions, including milk 
and saliva and is also present in neutrophil granules (12). LF 
has been reported to serve a role in host defense and has various 
biological properties, including antimicrobial effects and 
modulation of cell growth (13,14). In addition to serving a key 
role in immune homeostasis, LF also reduces oxidative stress 
and may control excessive inflammatory responses (13,15,16). 
Recently, Sriramoju et al (17) reported that LF exerts various 
beneficial effects on humans and animals, including inhibition 
of carcinogenesis and prevention of drug‑induced toxicity. 
Irradiated mice on an LF diet exhibited a significantly higher 
survival rate compared with mice fed a standard diet (18). The 
prevention of chemotherapy‑induced ovarian disorders in mice 
receiving oral LF has also been reported (19). In addition, the 
use of a gel containing LF in patients with oral cancer who 
were treated with radiotherapy, increased salivary secretion, 
inhibited xerostomia and improved oral bacterial flora (20).

However, studies on the radioprotective effects of LF are 
limited. The aim of the present study was to investigate in vivo 
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whether LF may enhance resistance to high doses of ionizing 
radiation in mice and to elucidate the possible mechanisms of 
action. To determine this, the survival ratio and hematopoi-
etic system toxicity in mice receiving whole‑body, high does 
(7.0 Gy) irradiation were assessed.

Materials and methods 

Animals and irradiation. Male Balb/c mice (age, 6 weeks; 
weight, 20‑23 g) were purchased from Unilever (Shanghai, 
China). All mice had free access to water and food; they were 
kept in a room maintained at 60±10% relative humidity and 
20±2˚C with a 12 h light/dark cycle. There were 5 mice per 
cage. A total of 60 mice were randomly assigned into 3 groups 
(n=20 per group) as follows: i) Control (non‑irradiated mice 
fed a standard diet without LF); ii) IR (whole‑body irradi-
ated mice fed a standard diet without LF); and iii)  IR+LF 
(whole‑body irradiated mice fed a diet containing 0.1% bovine 
LF; Sigma‑Aldrich, Merck KGaA, Darmstadt, Germany). The 
mice in the IR and IR+LF groups were exposed to a sublethal 
radiation dose (7.0 Gy). The control mice were sham irradiated. 
The mice were irradiated using a 6‑MV linear accelerator at 
a dose rate of 0.865 Gy/min (PRIMUS High Energy; Siemens 
AG, Munich, Germany). The mice were fed for 7 days prior to 
irradiation and for 30 continuous days following irradiation. 
The study protocol was approved by the Ethics Committee of 
Qianfoshan Hospital of Shandong Province (Jinan, China).

Peripheral blood cell counts. Blood was collected from the 
mice via the tail vein in EDTA tubes (BD Biosciences, Franklin 
Lakes, NJ, USA) on days 0, 1, 2, 3, 9, 14, 19 and 29 following 
irradiation. The blood was centrifuged at 1,000 x g for 20 min 
at 20±2˚C and evaluated using an automated hematology 
analyzer (pocH‑100i; Sysmex Corporation, Kobe, Japan) to 
provide the complete blood cell counts. The measurements 
included leukocyte, erythrocyte and platelet (PLT) counts, as 
well the hemoglobin. The normal references value of hemato-
logical parameters were described previously (21).

Lymphocyte isolation and comet assay. A volume of 0.15 ml 
whole blood was layered onto the lymphocyte separation 
medium (cat. no. MRGMA0; R&D Systems, Inc., Minneapolis, 
MN, USA) and centrifuged for 2 min at 3,500 x g at 20±2˚C. 
The lymphocytes were subsequently transferred to a 1.5 ml 
tube containing 1.2 ml 0.1 M PBS and centrifuged for 5 min at 
2,000 x g at 20±2˚C. The lymphocytes were washed twice with 
PBS. The cells were then suspended in PBS and the density 
was adjusted to 5‑6x104/ml. A comet assay was performed 
under neutral conditions as described by Banath et al (22), 
with a slight modification. Specifically, special comet slides 
were used as opposed to conventional slides. All comet images 
were analyzed using CASP Lab software (version 1.2.3b2; 
CASPLab, Wroclaw, Poland) (23) and the percentage of DNA 
in the Olive Tail Moment (OTM) was recorded to characterize 
the lymphocytic DNA damage.

Biochemical analysis. The livers were removed, fixed in 4% 
paraformaldehyde solution at room temperature for 20 min 
and ground 30 days after radiation (5 mice per group). The 
obtained cells were washed with PBS and suspended in EDTA. 

Superoxide dismutase (SOD) and malondialdehyde (MDA) 
activities in the liver were analyzed using SOD and MDA 
assay kits (Beyotime Institute of Biotechnology, Haimen, 
China) according to the manufacturer's protocol.

Statistical analysis. Data are presented as the mean ± standard 
deviation (≥5 mice per group at each time point). Statistical 
analysis was performed using one‑way analysis of variance 
with a post hoc Tukey's test (multiple comparison test) to deter-
mine the significance of differences among multiple groups. 
P<0.05 was considered to indicate a statistically significant 
difference. SPSS version 13.0 software (SPSS, Inc., Chicago, 
IL, USA) was used for the analyses. 

Results

LF increases the survival rate of mice exposed to irradiation. 
In the present study, mice in the IR and IR+LF groups were 
exposed to 7 Gy radiation. The survival rate was monitored 
on days 1‑30 following irradiation (Fig. 1). Kaplan‑Meier 
analysis indicated that survival rates were significantly higher 
in the IR+LF group compared with the IR group between day 
12 and 30 (P<0.05). On day 30 the survival rate of the IR+LF 
group was 50% and the survival rate of the IR group was 33%. 
The survival rate in the IR+LF group was significantly higher 
compared with that of the IR group (P<0.05). The differ-
ences between the IR+LF group and the control were also 
statistically significant (P<0.05). These results suggest that 
LF increased the survival rate of mice following exposure to 
radiation. 

LF reduces the radiation‑induced decrease in body weight. 
The body weights of the mice were measured at various time 
points following irradiation and the mean weight ± standard 
deviation was calculated among surviving mice (Fig. 2). The 
results revealed that the body weights significantly increased 
in the control group, remained mostly constant in the IR+LF 
group and decreased slightly in the IR group between day 
8 and 10 after irradiation. Statistical analysis indicated that 
body weight was significantly higher in the IR+LF group 
compared with the IR group between days 20 and 30 (P<0.05). 
Furthermore, the body weights of the mice in the control 
group were significantly greater compared with the IR+LF 
group on days 20 and 25 (P<0.05). Furthermore, on day 30, no 
significant differences in body weight were identified between 
the control group and the IR+LF group.

LF enhances hematological repopulation following 
whole‑body irradiation. Hematological parameters were 
recorded following irradiation, including changes in the 
leukocyte count (Fig. 3). The leukocyte count in the IR+LF 
group exhibited a progressive decline to 1.9x109/l on day 3. In 
addition, the leukocyte count appears to stay steady between 
days 9 and 14 in the IR+LF group at ~2.6x103/µl. On day 29 the 
leukocyte count of the IR+LF mice had stabilized to within the 
normal range (7.6x109‑10.9x109/l) (21). The significant differ-
ence was identified between the control group and the IR+LF 
group except on day 29 (P<0.05). However, the leukocyte 
count of the IR mice remained low (0.35x109/l) until day 14. 
Between day 9 and 29, the leukocyte counts in the IR group 
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were significantly lower compared with the IR+LF group 
(P<0.05). 

In the IR+LF group the erythrocyte count decreased 
to 4.6x1012/l on day 9 and gradually recovered to a value of 
6.47x1012/l on day 14 (Fig. 4). No significant difference was 
identified between the control group and the IR+LF group on 
day 29. In the IR group the erythrocyte count decreased to 
2.17x1012/l on day 9. From day 9, the erythrocyte count in the 
IR+LF group was significantly greater compared with the IR 
group (P<0.05). The control group was significantly greater 
compared with the IR group between day 3 and 29 (P<0.05). 
These results indicate that LF improved erythrocyte repopula-
tion in the mice.

Following a decrease post irradiation, the PLT count in 
the IR+LF group was restored to within a normal range on 
day 19 (Fig. 5) (21). However, in the IR group, the PLT count 
decreased to a minimum value at day 9 and slowly increased 
to a normal level (21) by day 29. The IR+LF group was signifi-
cantly greater compared with the IR group between day 1 aand 
9, and 19 and 29 (P<0.05). The control group was significantly 

Figure 1. Survival rates of irradiated mice. Each vertical bar indicates the 
standard deviation. Data are presented as the mean ± standard deviation 
(5 mice/group/time point). IR, irradiated mice fed a standard diet; IR+LF, 
irradiated mice fed lactoferrin. *P<0.05 vs. the control group; #P<0.05 vs. 
the IR group.

Figure 2. Body weights of irradiated mice. Each vertical bar indicates the 
standard deviation. Data are presented as the mean ± standard deviation 
(5 mice/group/time point). IR, irradiated mice fed a standard diet; IR+LF, 
irradiated mice fed lactoferrin. *P<0.05 vs. the control group; #P<0.05 vs. 
the IR group.

Figure 3. Leukocyte counts of mice following irradiation. Each vertical bar 
indicates the standard deviation. Data are presented as the mean ± standard 
deviation (5 mice/group/time point). IR, irradiated mice fed a standard diet; 
IR+LF, irradiated mice fed lactoferrin. *P<0.05 vs. the control group; #P<0.05 
vs. the IR group.

Figure 4. Erythrocite counts of mice following irradiation. Each vertical bar 
indicates the standard deviation. Data are presented as the mean ± standard 
deviation (5 mice/group/time point). IR, irradiated mice fed a standard diet; 
IR+LF, irradiated mice fed lactoferrin. *P<0.05 vs. the control group; #P<0.05 
vs. the IR group.

Figure 5. Platelet counts of mice following irradiation. Each vertical bar 
indicates the standard deviation. Data are presented as the mean ± standard 
deviation (5 mice/group/time point). IR, irradiated mice fed a standard diet; 
IR+LF, irradiated mice fed lactoferrin. *P<0.05 vs. the control group; #P<0.05 
vs. the IR group.
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greater compared with the IR and IR+LF group (P<0.05). No 
significant difference was identified between the control group 
and the IR+LF group on day 29. These results indicate that LF 
improved PLT repopulation in the mice.

The results also demonstrated that IR induced a significant 
decrease in the level of hemoglobin between days 7 and 21 
following irradiation. Post irradiation, the hemoglobin levels 
in the IR+LF and IR groups were significantly lower compared 
with the control group (P<0.05; Fig. 6). The hemoglobin level 
recovered faster and was consistently increased in the IR+LF 
group compared with the IR group. The hemoglobin levels in 
the IR+LF group were significantly higher compared with the 
IR group (P<0.05). These results indicate that LF significantly 
enhanced the recovery of hemoglobin during the experimental 
period compared with the IR group. 

LF increases antioxidant capacity. The MDA level is associ-
ated with lipid peroxidation in the liver (24). The MDA level 
in hepatic tissue was significantly lower in the IR+LF group 
compared with the IR group, which suggests that the LF diet 
prevented hepatic lipid peroxidation (Table I). SOD activity 
indicates the generation of oxidative stress (25). The protective 
response to oxidative damage in the liver of IR mice decreased 
significantly following irradiation compared with the control 
group. However, the LF diet significantly prevented the change 
in SOD activity compared with the IR group.

LF decreases the OTM of lymphocytes following irradiation. 
Irradiation led to the breakage of DNA chains. The OTM 
percentage 24, 48 and 72 h post irradiation in the IR+LF group 
was significantly greater and lesser compared with the control and 
IR groups, respectively (P<0.05; Fig. 7). Following unwinding, 
DNA was affected by the electric field in the electrophoresis 
liquid, forming the distinctive comet tail formation (Fig. 8). 

Discussion

A number of substances with radioprotective properties have 
been previously reported  (26). Intraperitoneal injection of 
purified ginseng extract following 6.5 Gy X‑ray irradiation 
significantly increased the 30 day survival rate in mice (27). 
In addition, Shigoka extract prepared from Acathopanax 
senticosus was also reported to increase the post‑irradiation 
survival rate in mice (28). The aim of the present study was 
to demonstrate the protective effects exerted by LF against 
radiation‑induced injury in mice. The results demonstrated 

that at day 30 following irradiation the survival rate of the 
mice was 17% higher in IR+LF group compared with the mice 
in the IR group, demonstrating that an LF diet significantly 
improves survival rates.

Figure 7. Olive Tail Moment of lymphocytes following irradiation. Data are 
presented as the mean ± standard deviation (5 mice/group/time point). IR, 
irradiated mice fed a standard diet; IR+LF, irradiated mice fed lactoferrin. 
*P<0.05 vs. the control group; #P<0.05 vs. the IR group.

Figure 6. Hemoglobin levels of mice following irradiation. Each vertical bar 
indicates the standard deviation. Data are presented as the mean ± standard 
deviation (5 mice/group/time point). IR, irradiated mice fed a standard diet; 
IR+LF, irradiated mice fed lactoferrin. *P<0.05 vs. the control group; #P<0.05 
vs. the IR group.

Figure 8. Comet images of lymphocytes following irradiation. Comet images 
were analyzed by CASPLab software. 

Table I. MDA level and SOD activity in hepatic tissue.

Group	 SOD (U/ml)	 MDA (pmol/l)

Control	 41.25±0.41	 4.31±0.02
IR	 21.52±0.24a	 7.31±0.12a

IR+LF	 42.56±0.71b	 4.98±0.42b 

aP<0.05 vs. the Control. bP<0.05 vs. the IR group. Data are presented 
as the mean ± standard deviation. n=5 per group. IR, irradiated mice 
fed a standard diet; IR+LF, irradiated mice fed lactoferrin; SOD, 
superoxide dismutase.
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 It has been previously established that the survival rate 
of mice following exposure to a sublethal dose of radiation 
depends, on the recovery of the hematopoietic system (29,30). 
To determine whether LF protects mice from IR‑induced 
hematopoietic system injury, the mice were exposed to X‑ray 
irradiation at a dose of 7.0 Gy.

It is known that the number of leukocytes is correlated with 
the radiation dose (31). The IR+LF group exhibited a rapid 
increase in the leukocyte count from day 14 onwards and on 
day 29 the count was restored to normal levels. However, in 
the IR group, the leukocyte count began to increase at day 14 
in the IR group, but the count remained at a lower level. These 
results indicate that LF stimulated the recovery of leukocytes 
and exerted a radioprotective effect.

In the IR group the PLT count exhibited an initial decline 
following X‑ray irradiation and on day 9 the count was at its 
lowest level, however it returned to normal by day 29. The 
IR+LF group exhibited a faster increase in PLTs compared 
with the IR group and they recovered to near normal levels at 
day 19. It has been previously reported that when infants were 
fed an LF‑supplemented infant formula, their hemoglobin 
value was increased compared with the group fed a conven-
tional infant formula (32); similar results were also observed 
in female marathon runners  (33). In the present study, the 
red blood cell count and hemoglobin levels were increased 
in the IR+LF group compared with the IR group following 
irradiation, which indicates that LF exerted hematopoietic or 
radioprotective effects.

Radiation may increase the oxidative capacity and 
induce damage to cellular molecules; previous biochemical 
studies have been performed to define normal MDA and 
SOD levels in liver tissue (34‑36). The results of the present 
study revealed that the MDA level in the hepatic tissue was 
significantly lower in the IR+LF group compared with the 
IR group, while SOD activity was significantly increased. 
These results reveal that LF exerted a protective effect 
on cellular molecules against radiation‑induced oxidative 
damage.

The comet assay, which detects DNA damage, has been 
widely used in radiation biology (37‑40). The comet assay is 
a rapid and sensitive microdosimetric technique, particularly 
useful in radiation accidents (41). In the IR+LF and IR groups, 
the comet assay was used to observe the degree of DNA 
damage by irradiation. The IR group exhibited a substantial 
increase in DNA damage, even at 30 days post irradiation, 
while the IR+LF mice exhibited significantly reduced DNA 
damage. The present study demonstrated that significant 
differences were identified between the IR group and IR+LF 
group following irradiation. Therefore, the comet assay 
demonstrated that LF effectively reduced radiation‑induced 
DNA injury. 

In conclusion, the results of the present study suggest that LF 
increases PLT and leukocyte counts and reduces DNA damage 
in mice following high‑dose irradiation. In the future LF may 
have potential as a radioprotector to reduce the adverse effects 
of radiotherapy. However, the exact mechanism of action of LF 
has not yet been fully elucidated. Therefore, further studies are 
required to determine whether radioscavenging or trapping is 
involved in this effect and to clarify the value of LF within the 
field of radiation protection.
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