Review Food Funct . 2022 Jan 24;13(2):501-513. doi: 10.1039/d1fo02750f.

The effect of lactoferrin in aging: role and potential

<u>Bing Li¹</u>, <u>Bo Zhang²</u>, <u>Xudong Liu¹</u>, <u>Yidan Zheng¹</u>, <u>Kuntong Han¹</u>, <u>Henan Liu¹</u>, <u>Changjing Wu¹</u>, <u>Jin Li¹</u>, <u>Shuhua Fan¹</u>, <u>Weifeng Peng¹</u>, <u>Fuli Zhang¹</u>, <u>Xiaomeng Liu¹</u>

Affiliations expand PMID: 34928288 - DOI: 10.1039/d1fo02750f

Abstract

Aging is frequently accompanied by various types of physiological deterioration, which increases the risk of human pathologies. Global public health efforts to increase human lifespan have increasingly focused on lowering the risk of aging-related diseases, such as diabetes, neurodegenerative diseases, cardiovascular disease, and cancers. Dietary intervention is a promising approach to maintaining human health during aging. Lactoferrin (LF) is known for its physiologically pleiotropic properties. Anti-aging interventions of LF have proven to be safe and effective for various pharmacological activities, such as anti-oxidation, anti-cellular senescence, anti-inflammation, and anti-carcinogenic. Moreover, LF has a pivotal role in modulating the major signaling pathways that influence the longevity of organisms. Thus, LF is expected to be able to attenuate the process of aging and greatly ameliorate its effects.