

Online Submissions: http://www.wjgnet.com/esps/ bpgoffice@wjgnet.com doi:10.3748/wjg.v20.i3.724 World J Gastroenterol 2014 January 21; 20(3): 724-737 ISSN 1007-9327 (print) ISSN 2219-2840 (online) © 2014 Baishideng Publishing Group Co., Limited. All rights reserved.

TOPIC HIGHLIGHT

WJG 20th Anniversary Special Issues (6): Helicobacter pylori

Efficacy of fermented milk and whey proteins in *Helicobacter pylori* eradication: A review

Aarti Sachdeva, Swapnil Rawat, Jitender Nagpal

Aarti Sachdeva, Swapnil Rawat, Department of Clinical Epidemiology, Sitaram Bhartia Institute of Science and Research, New Delhi 110016, India

Jitender Nagpal, Department of Pediatrics, Sitaram Bhartia Institute of Science and Research, New Delhi 110016, India

Author contributions: Nagpal J conceived the idea of the manuscript; Sachdeva A and Rawat S conducted the literature search, rated the studies and drafted the manuscript; Nagpal J finalized the manuscript and will act as guarantor for the paper.

Supported by Intramural funding by Sitaram Bhartia Institute of Science and Research, New Delhi

Correspondence to: Dr. Jitender Nagpal, Consultant, Department of Pediatrics, Sitaram Bhartia Institute of Science and Research, New Delhi 110016,

India. jitendernagpal@gmail.com

 Telephone:
 +91-11-42111111
 Fax:
 +91-11-26533027

 Received:
 June 29, 2013
 Revised:
 November 9, 2013

 Accepted:
 December 5, 2013
 Prevised:
 November 9, 2013

Published online: January 21, 2014

Abstract

Helicobacter pylori (H. pylori) eradication is considered a necessary step in the management of peptic ulcer disease, chronic gastritis, gastric adenocarcinoma and mucosa associated lymphoid tissue lymphoma. Standard triple therapy eradication regimens are inconvenient and achieve unpredictable and often poor results. Eradication rates are decreasing over time with increase in antibiotic resistance. Fermented milk and several of its component whey proteins have emerged as candidates for complementary therapy. In this context the current review seeks to summarize the current evidence available on their role in *H. pylori* eradication. Pertinent narrative/systematic reviews, clinical trials and laboratory studies on individual components including fermented milk, yogurt, whey proteins, lactoferrin, α -lactalbumin (α -LA), glycomacropeptide and immunoglobulin were comprehensively searched and retrieved from Medline, Embase, Scopus, Cochrane

Controlled Trials Register and abstracts/proceedings of conferences up to May 2013. A preponderance of the evidence available on fermented milk-based probiotic preparations and bovine lactoferrin suggests a beneficial effect in Helicobacter eradication. Evidence for α -LA and immunoglobulins is promising while that for alvcomacropeptide is preliminary and requires substantiation. The magnitude of the potential benefit documented so far is small and the precise clinical settings are ill defined. This restricts the potential use of this group as a complementary therapy in a nutraceutical setting hinging on better patient acceptability/ compliance. Further work is necessary to identify the optimal substrate, fermentation process, dose and the ideal clinical setting (prevention/treatment, first line therapy/recurrence, symptomatic/asymptomatic, gastritis/ulcer diseases etc.). The potential of this group in high antibiotic resistance or treatment failure settings presents interesting possibilities and deserves further exploration.

 $\ensuremath{\mathbb{C}}$ 2014 Baishideng Publishing Group Co., Limited. All rights reserved.

Key words: *Helicobacter pylori*; Fermented milk; Whey proteins; Bovine lactoferrin; α -Lactalbumin; Glycomacropeptide; Immunoglobulin

Core tip: Treatment regimens for *Helicobacter* are cumbersome, prone to side effects and often have low success rates. Fermented milk and related proteins have often been explored as potential candidates for complementary therapy. The current review sought to summarize the current evidence available on their role in *Helicobacter pylori* eradication and found substantial evidence to support the use of fermented milk based probiotic preparation and bovine lactoferrin. Evidence for other whey proteins is preliminary and requires substantiation. Further work is necessary to identify the optimal substrate, fermentation process, dose and

the ideal clinical setting. The potential of this group in antibiotic resistance or treatment failure settings also presents interesting possibilities.

Sachdeva A, Rawat S, Nagpal J. Efficacy of fermented milk and whey proteins in *Helicobacter pylori* eradication: A review. *World J Gastroenterol* 2014; 20(3): 724-737 Available from: URL: http://www.wjgnet.com/1007-9327/full/v20/i3/724.htm DOI: http://dx.doi.org/10.3748/wjg.v20.i3.724

INTRODUCTION

Helicobacter pylori (H. pylori) is a gram negative, spiral shaped bacterium found in the gastric mucous layer. It has an ammonia-producing surface urease which allows adherence to and colonization of the gastric epithelium, by neutralizing the acidic gastric environment^[1]. H. pylori is now implicated in peptic ulcer disease, chronic gastritis, gastric adenocarcinoma, mucosa associated lymphoid tissue lymphoma and duodenal ulcer disease^[2-4]. Eradication of H. pylori is considered a necessary step in the management of these diseases. Standard triple therapy eradication regimens (proton pump inhibitor plus clarithromycin and amoxicillin or nitroimidazole) are inconvenient and achieve unpredictable and often poor results^[5]. Further, eradication rates are reported to be decreasing over time with an increase in antibiotic resistance^[6]. Second line quadruple regimens are further limited by poorer patient compliance and increased side effects^[6]. In this context, several alternative and complementary therapies have been tried in an attempt to achieve better eradication without affecting compliance. In this search, fermented milk and several of its component whey proteins have emerged as potential candidates for complementary therapy. They have the inherent advantage of better patient acceptability.

Several randomized controlled trials and a recent meta-analysis document that fermented milk-based probiotic preparations improve *H. pylori* eradication rates by 10%. Their efficacy has been argued to be better than capsule-based bacteria-only preparations and considered partly or completely contributed by the anti-bacterial and immunogenic properties of component whey proteins formed as a result of fermentation etc. Potential efficacy of individual whey proteins in H. pylori eradication has also been a subject of interest in recent research. However the role of fermented milk or whey proteins in clinical practice is not yet universally accepted, precisely defined or widely discussed^[7]. In this context the current review sought to summarize the current evidence available on the role of fermented milk and its component whey proteins in H. pylori eradication.

For the purpose of the current review pertinent narrative/systematic reviews, clinical trials and laboratory studies on individual components including fermented milk, yogurt, whey proteins, lactoferrin, α -lactalbumin

Sachdeva A et al. Fermented milk in H. pylori eradication

(α -LA), glycomacropeptide and immunoglobulin were comprehensively searched and retrieved from Medline, Embase, Scopus, Cochrane Controlled Trials Register and abstracts/proceedings of conferences up to May 2013. The available studies/meta-analysis were rated for quality as per the Scottish Intercollegiate Guidelines Network (SIGN) check lists^[8] and the Quality Rating for Individual Studies^[9]. The evidence was subsequently graded using the Revised Grading System^[10]. The level of recommendation was later defined into one of four grades (A, B, C or D; SIGN grades)^[11].

FERMENTED MILK

Fermented milk refers to whole or skimmed milk curdled to a beverage or custard like consistency by lactic acid producing bacteria. A wide assortment of products, varying by the process, bacteria, duration and other variables, are available and widely consumed in different countries. However, there are several commonalities. Fermented milk possesses a protein system constituted by two major families of proteins i.e., casein and whey proteins. Casein is insoluble, and accounts for 80% of the whole protein inventory. Whey proteins are globular water soluble molecules and include bovine lactoferrin, α -LA, glycomacropeptide, immunoglobulin, β -lactoglobulin and lactoperoxidase. Whey is thought to have the ability to act as an antioxidant, immune enhancer, antihypertensive, antitumor, hypolipidemic, antiviral, antibacterial and as a chelating agent^[12].

In the context of Helicobacter eradication there is a fair body of evidence from trials conducted using fermented milk (usual culturally/commercially available preparations including yogurt), fermented milk based probiotic preparations (FMPPs; fermented milk with specifically added live probiotic bacteria like Lactobacilli) and capsule based probiotics. An observational study on 464 healthy Mexican subjects documented lower prevalence of H. pylori seropositivity in those consuming yogurt more than once a week compared with nonconsumers^[13]. As presented in Table 1, several clinical trials and a systematic review of RCTs compared an FMPP vs placebo or standard therapy plus FMPP vs standard therapy and documented a beneficial effect of FMPPs^[14]. The overall quality and quantity of evidence for FMPPs appears convincing (Recommendation Grade-A) and beneficial effect appears to be sustained when FMPP were used in combination with standard therapy (Recommendation Grade A^[15-18]). Also, benefit has been documented in symptomatic children (Recommendation Grade-B), symptomatic and asymptomatic adults (Recommendation Grade-B) and in patients who failed eradication on standard therapy (Recommendation Grade-B). The overall magnitude of the benefit was estimated to be 5%-15%^[14].

With reference to the active principle components responsible for this effect, the available clinical evidence can be better summarized on the basis of three arguTable 1 Studies comparing "fermented milk based probiotic preparation" with placebo or "standard therapy + fermented milk based probiotic preparation" with "standard therapy"

Ref.	Type of trial	Evidence grade ¹	Quality rating ²	Subjects	Study design	Study groups/methods	Outcome variable/s	Results and conclusions
Positive Bekar <i>et al</i> ⁽¹⁵⁾ , 2011, Turkey	Human	1+	÷	82 pts of dyspepsia and <i>H.</i> <i>pylori</i> infection	RCT	Two groups - Control group (n = 36; Triple therapy - lansoprazole, clarithromycin and amoxicillin + placebo) and Treatment group [n = 46; Triple therapy + kefir (fermented milk drink con- taining probiotics)]; given for 14 d	Eradication of <i>H. pylori;</i> adverse events of eradica- tion therapy (Urease test after 45 d of treatment)	Significantly more patients (78.2% vs 50.0%) in the treatment group achieved eradication in comparison with control group. Side effects were less frequent and less severe in the treatment group
Sachdeva <i>et al</i> ^{114]} 2009, India	Metaanalysis	1+	++	10 eligible trials; data available for 963 patients		Trials had to be randomized or quasi-randomized and controlled, using a FMPP in the intervention group treating <i>Helicobacter</i> -infected patients. The only difference between the two groups had to be FMPP	Eradication of <i>H. pylori;</i> adverse events of eradication therapy	The pooled odds ratio for eradica- tion by ITT analysis in the treatment <i>vs</i> control group was 1.91 (1.38-2.67; $P < 0.0001$) using fixed effect model The pooled risk difference was 0.10 (95%CI: 0.05-0.15; $P < 0.0001$) by fixed effect model. Fermented milk based probiotic preparations improve <i>H.</i> <i>pylori</i> eradication rates by approxi- mately 5%-15%, whereas the effect on
Sýkora <i>et al</i> ^[16] , 2005, Czech Republic and United Kingdom	Human	1+	++	86 symp- tomatic <i>H. pylori</i> positive children	RCT	Two groups - OAC-LC group - Omeprazole, amoxicillin and clarithromycin for 7 d with fermented milk contain- ing <i>L. casei</i> DN-114001 for 14 d ($n = 39$) vs OAC group - Omeprazole, amoxicillin and clarithromycin for 7 d ($n =$ 47)	Eradication of <i>H. pylori,</i> Endoscopic and Histologic comparison	adverse effects is heterogeneous ITT based eradication rates for the group A were 84.6% and 91.6% by PP analysis. Eradication in the group B was 57.5% in the ITT and 61.3% in the PP group. Eradication success was higher in the group A compared to group B in both ITT ($P = 0.0045$) and PP analysis ($P = 0.0019$)
Sheu <i>et al^{117]},</i> 2006, Taiwan	Human	1+	+	138 patients in whom triple therapy failed	RCT	Two groups - yogurt (containing L. acidophilus La5, Lactobacillus bulgaricus, Bifidobacterium lactis Bb12 and Streptococcus thermophilus)- plus-quadruple therapy group for 7 d (n = 69) vs qua- druple therapy only group (n	Successful eradication of <i>H. pylori</i> , drug compliance, side effects	The yogurt-plus-quadruple therapy group had a higher <i>H. pylori</i> eradica- tion rate than did the quadruple therapy only group (ITT analysis 85% vs 71.1%, $P < 0.05$; PP analysis- 90.8% vs 76.6%, $P < 0.05$). Side effects were more frequent in the quadruple thera- py-only group than in the yogurt-
Miki <i>et al^[20],</i> 2007, Japan	Human	1-	++	69 subjects who were positive for <i>H.</i> <i>pylori</i> infection	RCT	= 69) for 7 d Two groups - Fermented milk (<i>Bifidobacterium bifidum</i> YIT) (BF-1) (n = 34) vs pla- cebo (untreated milk) (n = 35) for 12 wk	Suppressive effect of BF-1 fermented milk on <i>H.</i> <i>pylori</i> urease activity and gastric situa- tion	plus-quadruple therapy group <i>H. pylori</i> infection was judged by the C-UBT. <i>H. pylori</i> -negativity (below 5%: <i>n</i> = 6 and 4 in the BF-1 and pla- cebo groups, respectively) subjects
Sheu <i>et al</i> ^[18] , 2002, Taiwan	Human	1-	+	160 H. pylori infected patients	ССТ	Two groups - triple plus yogurt (TYG) (containing L. acidophilus La5, Lactobacillus bulgaricus, Bifidobacterium lactis Bb12 and Streptococcus thermophilus) group (n = 80) vs triple only group (TG) (n = 80) for 7 d	Successful eradication of <i>H. pylori</i> , drug compliance, side effects	By ITT analysis, the triple-plus- yogurt group had a higher <i>H. pylori</i> eradication rate than the triple-only group ($P < 0.05$) and side effects were more commonly found in the TG than in the TYG. Also a significantly higher proportion of patients in the TYG completed the 7-d regimen than in the TC (675% m 42.8% $B < 0.05$)
Felley <i>et al</i> ^[21] , 2001, Boston	Human	1-	+	53 vol- unteers infected with <i>H.</i> <i>pylori</i>	CCI	Two groups - Acidified milk containing <i>L. johnsonii</i> La1 (LC-1) (<i>n</i> = 25) vs Placebo (pasteurized milk) (<i>n</i> = 27) for 3 wk followed by 500 mg bid clarithromycin received by all subjects during the last 2 wk	Effect of the given treat- ment on <i>H.</i> <i>pylori</i> density, gastric inflam- mation and activity	in the TG (67.5% vs 43.8%, $P < 0.05$) In the LC-1 group, four had higher scores in the antrum, 14 were found to have a decreased <i>H. pylori</i> density reflected by lower scores ($P = 0.02$) and in the placebo group in antrum scores remain identical in 10 volun- teers and decreased in 11 (0.08). The results suggest that <i>H. pylori</i> infection and gastritis can be down-regulated by LC-1

Cats <i>et al</i> ^[22] , 2003, Netherlands	Human	1-	-	14 <i>H.</i> <i>pylori</i> positive subjects	CCT	Two groups - Fermented milk (<i>L.casei</i>) for 3 wk (<i>n</i> = 14) <i>vs</i> control group (<i>n</i> = 6)	Effect of <i>L.casei</i> on urease activity <i>in vivo</i> (<i>H. pylori</i> posi- tive subjects)	Urease activity decreased in nine of the 14 (64%) subjects with <i>L. casei</i> supplementation and in two of the six (33%) controls (<i>P</i> = 0.22). A slight, but non-significant, trend towards a sup- pressive effect of <i>L. casei</i> on <i>H. pylori</i> <i>in vivo</i> may exist
Wang <i>et al^[19],</i> 2004, Taiwan	Human	1-	-	70 vol- unteers infected with <i>H.</i> <i>pylori</i>	CCT	Two groups - AB yogurt (containing L. acidophilus La5, Lactobacillus bulgaricus, Bifidobacterium lactis Bb12 and Streptococcus thermophilus) (n = 59) vs milk placebo (n = 11) for 6 wk	Effect of yogurt on <i>H.</i> <i>pylori</i> infection in humans	Administration of AB-yogurt de- creased the urease activity of <i>H. pylori</i> after 6 wk of therapy (<i>P</i> < 0.0001). Regular intake of yogurt containing Bb12 and La5 effectively suppressed <i>H. pylori</i> infections in humans
Park <i>et al</i> ^[23] , 2001, South Korea	Human	NR	-	40 H. pylori infected volunteers	ССТ	Two groups - Fermented milk (<i>Lactobacillus acidophilus</i> , <i>Lactobacilus casei</i>) (<i>n</i> = 21) vs Placebo (<i>n</i> = 19) for 4 wk	Eradication of <i>H. pylori</i> , Comparison of endoscopic findings, Compliance	All patients were compliant and the <i>H. pylori</i> density of antrum tended to decrease in treatment group compared with placebo group (<i>P</i> = 0.072). 3 cases in treatment group were noted for negative conversions of both rapid urease test and C-UBT
Kim <i>et a</i> l ^[24] , 2007, South Korea	Human	FINA	FTNA	262 H. pylori infected patients	CCT	Two groups - triple plus yogurt group for 3 wk (n = 147) vs triple only group (n = 115) for 1 wk	Eradication of H. pylori	In PP analysis, <i>H. pylori</i> eradication rate in the yogurt group, 87.7% was marginally higher than that in control group, 78.4% (<i>P</i> = 0.055). And accord- ing to ITT analysis, the eradication rate in the yogurt group, 78.2% was also marginally higher than that of control group, 69.5% (<i>P</i> = 0.062)
Negative Goldman <i>et al</i> ^{125]} , 2006, Argentina	Human	1+	++	65 chil- dren who tested positive for <i>H.</i> <i>pylori</i>	RCT	Two groups - triple therapy with probiotic food (com- mercial yogurt containing <i>Bifdobacterium animalis</i> and <i>Lactobacillus casei</i>) (<i>n</i> = 33) vs triple therapy with placebo (milk fluid) (<i>n</i> = 32)	Eradication of H. pylori	We found no significant differences in <i>H. pylori</i> eradication rates at 1 and 3 mo between the treated group (ER 45.5% and 42.4%) and the control group (ER = 37.5% and 40.6%). Study could not demonstrate an adjuvant effect of the studied probiotic food to triple therapy in the eradication of <i>H.</i> <i>pylori</i> infection in children
Song <i>et al</i> ^[26] , 2005, South Korea	Human	NA	-	70 patients with duodenal ulcer	ССТ	Two groups - triple-plus- fermented milk (<i>Lactobacilli</i>) (<i>n</i> = 35) <i>vs</i> triple plus placebo (<i>n</i> = 35)	H. pylori eradi- cation rate, Fermented milk group reduces treatment-re- lated adverse reactions	Eradication was successful in 88.6% in the <i>Lactobacilli</i> group and 85.7% in the placebo group (<i>P</i> = 1.00). <i>Lac- tobacillus</i> containing fermented milk couldn't exert beneficial effects on <i>H.</i> <i>pylori</i> eradication or treatment-related adverse reactions

¹Levels of evidence: 1++ High quality meta-analysis, systematic reviews of RCTs, or RCTs with a very low risk of bias; 1+ Well conducted meta-analysis, systematic reviews of RCTs or RCTs with a high risk of bias; 2++ High quality systematic reviews of RCTs or RCTs with a high risk of bias; 2++ High quality systematic reviews of case-control or cohort studies or high quality case-control or cohort studies with a very low risk of confounding, bias, or chance and a high probability that the relationship is causal; 2+ Well conducted case control or cohort studies with a low risk of confounding, bias, or chance and a significant risk that the relationship is not causal; 3 Non-analytic studies, *e.g.*, case reports, case series; 4 Expert opinion. ²Quality rating for individual studies: ++ Applies if all or most criteria from the checklist are fulfilled; where criteria are not fulfilled the conclusions of the study or review are thought unlikely to alter; + Applies if some of the criteria from the checklist are fulfilled; where criteria are not fulfilled or are not adequately described, the conclusions of the study or review are thought unlikely to alter; - Applies if few or no criteria from the checklist are fulfilled; where criteria are not fulfilled; where criteria are not fulfilled or are not adequately described, the conclusions of the study or review are thought likely or very likely to alter. *H. pylori: Helicobacter pylori*; RCT: Randomised controlled trial; CCT: Controlled clinical trial; CT: Clinical trial; C-UBT: ¹³C-urea breath test; FMPP: Fermented milk based probiotic preparation; NR: Not reported; FTNA: Full text not available; NS: Not significant; LC-1: *L. johnsonii* La1.

ments (Tables 1, 2 and 3). First, if whey proteins have clinically significant anti-Helicobacter properties then FMPP alone or in combination with standard therapy should have documented effectiveness (improvement in eradication rates)^[15-26]. Secondly, capsule based probiotic preparations (bacteria only) should be partly or completely ineffective in *H. pylori* eradication^[27-38]. Thirdly, if FMPP's are compared with a fermented milk control

group then in the control group there should be some improvement partly or completely negating the effect of the addition of bacteria in the treatment group^[39-41].

As summarized in Tables 1-3, the available evidence supports the above assertions and arguments. It is evident from the clinical studies and meta-analysis presented in Tables 1-3 that FMPPs have some efficacy against *Helicobacter* (10 positive trials and one positive meta-anal-

Table 2 Studies comparing capsule based probiotic (bacteria only) with placebo or standard therapy plus capsule based probiotic *vs* standard therapy

Ref.	Туре	Evidence	Quality	Subjects	Study	Study groups/	Outcome variable/s	Results and conclusions
KCI.	of trial	grade ¹	rating ²	Jubjeets	design		Outcome variable/3	Results and conclusions
Positive Canducci <i>et al</i> ^[27] , Italy, 2000	Human	1+	+	120 <i>H. pylori</i> positive pa- tients	RCT	Two groups: RCA (Rabeprazole, Clarithromycin, Amoxycillin) group- triple therapy (<i>n</i> = 60), RCAL group- triple therapy with Lactéol Fort for 7 d	Effect of <i>L. acidophilus</i> could improve the efficacy of a standard anti- <i>H. pylori</i> therapy	In RCA group eradication was successful in 72% at PP analysis or 70% at ITT analysis and in RCAL group eradication was achieved with 88% with PP analysis, 87% with ITT analysis
Negative Gotteland <i>et al</i> ^[28] , 2005	Human	1+	+	254 children positive for <i>H. pylori</i>	RCT	Three groups: Antibiotics (group Ab)- $(n = 57)$ for 8 d, Lactobacillus aci- dophilus LB (group Ab)- $(n = 63)$ for 8 wk, Saccharomyces boulardii plus inulin (group Sb1)- $(n =$ 62) 8 wk	To evaluate the capacity of <i>Lactobacillus acidophilus</i> LB and of symbiotic combina- tion of Sb plus inulin to interfere with <i>H. pylori</i> colonization in children	<i>H. pylori</i> was eradicated in 66%, 12% and 6.5% of the children from the Ab, Sb1 and LB groups, respectively. A moderate but significant difference in Δ DOB was detected in children receiving living Sb1, but not in those receiving LB
Lionetti <i>et al</i> ⁽²⁹⁾ , 2006, Italy	Human	1+	++	40 <i>H. pylori</i> positive chil- dren	RCT	Two groups: Group	Effect of <i>Lactobacillus reuteri</i> to prevent or minimize the gastrointestinal side-effects	No significant differences were observed between
Nista <i>et al</i> ^[30] , 2004, Italy	Human	1+	++	106 H. pylori positive pa- tients	RCT	Two groups: Group A- triple therapy for 7 d plus <i>Bacillus</i> <i>clausii</i> (probiotic) for 14 d starting from the first day of the treatment (n = 54) Group B- triple therapy plus placebo $(n = 52)$	incidence and severity of	The <i>H. pylori</i> eradication rate was similar between <i>B. B. clausii</i> and placebo groups. In particular, ITT analysis has shown <i>H. py-</i> <i>lori</i> was eradicated in 39 of 54 patients (72.2%) in the <i>B. clausii</i> group and in 37 of 52 patients (71.15%) in the placebo group. In PP population, <i>H. pylori</i> was eradicated in 39 of 50 patients (78%) in the B. clausii group and in 37 of 50 patients (74%) in the
Myllyluoma <i>et al^[31],</i> 2005, Finland	Human	1+	+	47 subjects with <i>H. pylori</i> infection	ССТ	A –probiotic drink (<i>n</i> = 23), group B- Placebo (<i>n</i> = 24) during <i>H. pylori</i> eradication and for	Effect of probiotic therapy on symptoms associated with the recommended <i>H.</i> <i>pylori</i> eradication treat- ment. As a secondary end- point to find out whether this therapy could improve the eradication rate	placebo group The <i>H. pylori</i> eradication rate was non-significantly higher in the group re- ceiving probiotic therapy (91% <i>vs</i> 79%, <i>P</i> = 0.42)
Cindoruk <i>et al^[32],</i> 2007, Turkey	Human	1+	+	124 patients with <i>H. pylori</i> infection	RCT	Two groups: Group A- triple therapy plus <i>S. boulardii</i> , Group B- triple therapy plus pla- cebo for 14 d		 H. pylori eradication rate, although higher in the treatment group, was sta- tistically similar in treat- ment and control groups: 71% (44/62) vs 59.7% (37/62), respectively (P > 0.05)

Armuzzi <i>et al</i> ^[33] , 2001, Italy	Human	1+	+	60 healthy asymptom- atic subjects screened positive for <i>H. pylori</i> infection	CCT	A- triple therapy for 7 d plus <i>Lactobacil</i> -	Effect of probiotic <i>Lactoba- cillus</i> GG to minimize or to prevent the occurrence of gastrointestinal side effects	H. pylori eradication rates in group A was 83.33% (25/30) and in group B was 80% (24/30). H. pylori eradication rate had no significant difference
Guo <i>et al</i> ^[34] , China, 2004	Human	FT NA	FT NA	97 H. py- lori positive symptomatic patients	ССТ	Two groups: treatment group (triple therapy plus Bifid triple viable capsule contain- ing <i>Bifidobacteria</i> <i>longum</i> , faecal strep- tococci, <i>Lactobacillus</i> <i>acidophilus</i>) (n = 47) control group: triple therapy (n = 50)	Efficacy of probiotic in the treatment of <i>H. pylori</i>	Eradication rate was 93.6% (44/47) in treat- ment group and 88% in control group (44/50). <i>H.</i> <i>pylori</i> eradication rate had no significant difference
Armuzzi <i>et al</i> ^[35] , 2001, Italy	Human	FT NA	FT NA	120 healthy asymptom- atic subjects screened positive for <i>H. pylori</i> infection	CCT	Two groups: Group A- triple therapy for 7 d plus <i>Lactobacil-</i> <i>lus</i> GG for 14 d dur- ing and the week after eradication therapy, Group B- triple therapy plus placebo	Effect of probiotic <i>Lactoba- cillus</i> GG to minimize or to prevent the occurrence of gastrointestinal side effects.	H. pylori eradication rates in group A was 80% (48/60) and in group B was 76.67% (46/60). H. pylori eradication rate had no significant difference
Cremonini <i>et al</i> ^[36] , Italy, 2002	Human	FT NA	FT NA	85 <i>H. pylori</i> positive, as- ymptomatic patients	ССТ	Four groups- re- ceived both during and for 7 d after a 1 wk-triple therapy Group 1 - <i>Lactoba-</i> <i>cillus</i> GG (<i>n</i> = 21), group II- <i>Saccha-</i> <i>romyces</i> boulardii (<i>n</i> = 22), group III- <i>lactobacillus</i> spp. And bifidobacteria (<i>n</i> = 21), group IV-placebo (<i>n</i> = 21)	Efficacy of probiotic in the eradication of <i>H. pylori</i> infection	The <i>H. pylori</i> eradication rate was almost identical between the probiotic and placebo groups
Tursi <i>et al^[37],</i> 2004, Italy	Human	FT NA	FT NA	70 patients with persis- tent <i>H. pylori</i> infection	CCT	Two groups- group A- quadruple therapy plus bacte- ria <i>lactobacillus casei</i> subsp. casei DG or group B- quadruple therapy only	Effect of probiotic supple- mentation on the effective- ness and tolerability of a new second-line 10 d quadruple therapy	
Cao <i>et al</i> ^[38] , China, 2005	Human	FT NA	FT NA	128 H. py- lori positive symptomatic patients	ССТ		Effect of treatment given in eradication of <i>H. pylori</i>	Eradication rates in group A 96.88% (62/64) and group B 92.19% (59/64) was not significantly dif- ferent

¹Levels of evidence: 1++ High quality meta-analysis, systematic reviews of RCTs, or RCTs with a very low risk of bias; 1+ Well conducted meta-analysis, systematic reviews of RCTs or RCTs or RCTs with a low risk of bias; 1- Meta-analysis, systematic reviews or RCTs or RCTs with a high risk of bias; 2++ High quality systematic reviews of case-control or cohort studies or high quality case-control or cohort studies with a very low risk of confounding, bias, or chance and a high probability that the relationship is causal; 2+ Well conducted case control or cohort studies with a low risk of confounding, bias, or chance and a significant risk that the relationship is not causal; 3 Non-analytic studies, *e.g.*, case reports, case series; 4 Expert opinion. ²Quality rating for individual studies: ++ Applies if all or most criteria from the checklist are fulfilled; where criteria are not fulfilled the conclusions of the study or review are thought unlikely to alter; + Applies if some of the criteria from the checklist are fulfilled; where criteria are not fulfilled or are not adequately described, the conclusions of the study or review are thought unlikely to alter; - Applies if few or no criteria from the checklist are fulfilled; where criteria are not fulfilled or are not adequately described, the conclusions of the study or review are thought unlikely to alter; - Applies if few or no criteria from the checklist are fulfilled; where criteria are not fulfilled; where criteria are not fulfilled; where criteria are not fulfilled or are not adequately described, the conclusions of the study or review are thought likely or very likely to alter. *H. pylori: Helicobacter pylori*; RCT: Randomised controlled trial; CCT: Controlled clinical trial; NR: Not reported; NS: Not significant.

ysis compared with 2 negative trials; Argument 1 above). It is also apparent from Table 1-3 that studies using capsule-based probiotic preparations are predominantly

negative (1 positive trial compared with 11 showing no benefit; and Argument 2). In support of Argument 3 the overall data on the beneficial effect of bacterial probiotic

Ref.	Type of trial	Evidence grade ¹	Quality rating ²	Subjects	Study design	Study groups/ methods	Outcome variable/s	Results and co	onclusions
Positive									
Pantoflickova <i>et al</i> ^[39] , 2003, Switzerland	Human	1-	++	50 <i>H. pylo-</i> <i>ri</i> positive healthy volun- teers	RCT	Two groups- fermented milk with LC (<i>n</i> = 25) <i>vs</i> fer- mented milk as Placebo (<i>n</i> = 25). Subjects took the treat- ment twice daily during the first 3 wk and once daily for the next 13 wk	Effect of LC ¹ intake without antibiotics on <i>H. pylori</i> gastritis, <i>H.</i> <i>pylori</i> den- sity	LC ¹ intake had a favor- able, albeit weak, effect on <i>H. pylori</i> associated gastritis, particularly in the antrum. Regular ingestion of fermented milk containing <i>L.johnsonii</i> may reduce the risk of developing disorders associated with high degrees of gastric inflammation and mucus depletion	to a decrease in set verity and activity of gastritis in the antrum (inflamma tory cell score afte 3-wk and 16 wk consumption: 6.3 \pm 0.7 and 6.4 \pm 1.0 respectively). In the placebo group mucus depletion scores remained at the same level during the whole duration of the study. <i>H. pylori</i> density decreased in 38% of subjects after 3 wk and 50% after 16 wk
Horie <i>et a</i> [^[40] , 2004, Japan, South Korea, Egypt	Human	1-	-	42 sub- jects with <i>H. pylori</i> infection	ССТ	Two groups- A- test group (yogurt containing 1, 5 g of egg yolk IgY-urease 3 times daily) (n = 22), B- control group (IgY-urease free yogurt) $(n$ = 20)	Effect of IgY-Urease drinking yogurt on C-UBT values	TG showed a reduction in UBT values from 51.18 ± 3.40 at wk 0 to 33.70 ± 3.50 and $31.03 \pm$ 3.54 at 2 and 4 wk resp. Suppression of <i>H. pylori</i> infection in humans could be achieved by consumption of drink- ing yogurt fortified with IgY-urease	decrease in UBT values from 51.40 4.48 to $44.38 \pm 5.1^{\circ}$ and 43.53 ± 5.48 a
Sakamoto <i>et al</i> ^[41] , 2001, Japan	Human	2-		31 subjects infected with <i>H.</i> <i>pylori</i> infection	СТ	The study was conducted in two parts. 1 st part = 90 g of yogurt (0-9 wk). 2 nd part = 90 g yogurt containing LG21 (9-18 wk)	Lactobacil- lus gasseri OLL2716	The [¹³ C] urea breath test and assays of serum pepsinogens revealed a significant improvement following LG21 treatment. LG21 was thus determined to be effective in both suppressing <i>H. pylori</i> and reducing gastric mucosal inflammation	There was no sig- nificant difference in C-UBT levels a $0 (26.2 \pm 15.1)$ and $9 (26.6 \pm 13.7)$ wk

¹Levels of evidence: 1++ High quality meta-analysis, systematic reviews of RCTs, or RCTs with a very low risk of bias; 1+ Well conducted meta-analysis, systematic reviews of RCTs or RCTs or RCTs with a low risk of bias; 1- Meta-analysis, systematic reviews or RCTs or RCTs with a high risk of bias; 2++ High quality systematic reviews of case-control or cohort studies or high quality case-control or cohort studies with a very low risk of confounding, bias, or chance and a high probability that the relationship is causal; 2+ Well conducted case control or cohort studies with a low risk of confounding, bias, or chance and a significant risk that the relationship is not causal; 3 Non-analytic studies, *e.g.*, case reports, case series; 4 Expert opinion. ²Quality rating for individual studies: ++ Applies if all or most criteria from the checklist are fulfilled; where criteria are not fulfilled the conclusions of the study or review are thought unlikely to alter; + Applies if some of the criteria from the checklist are fulfilled; where criteria are not fulfilled or are not adequately described, the conclusions of the study or review are thought unlikely to alter; - Applies if few or no criteria from the checklist are fulfilled; where criteria are not fulfilled or are not adequately described, the conclusions of the study or review are thought unlikely to alter; - Applies if few or no criteria from the checklist are fulfilled; where criteria are not fulfilled; where criteria are not fulfilled or are not adequately described, the conclusions of the study or review are thought likely or very likely to alter. *H. pylori: Helicobacter pylori;* RCT: Randomised controlled trial; CCT: Controlled clinical trial; CT: Clinical trial; C-UBT: ¹³C-urea breath test.

preparations in Helicobacter eradication can, at best, be classified as "equivocal" (3 trials with weak methodology and equivocal results). This apprehension is further substantiated by a meta-analytic sub-analysis presented in an earlier report^[42]. In this sub-analysis the beneficial effect of these preparations was minimal and it failed on exclusion sensitivity analysis (exclusion of one study majorly altered results) in consonance with the hypothesized argument.

In the context of studies comparing FMPP with fer-

mented milk, several results are noteworthy. Of the three trials reporting control group data, two (one RCT and one CCT; Evidence grade 1-)^[39,40] documented an improvement in gastritis or C-UBT values in the control group which is consistent with the argument presented earlier. In the third pre- and post-intervention trial (clinical trial, evidence grade $2^{[41]}$) no significant differences were observed during the period that yogurt was administered alone. Hence, although there are some discrepant results the preponderance of the available evidence appears con-

Table 4 Whey protein components and its basic properties												
Whey components	Concentration (g/L)	% of Whey Protein	Molecular weight (kDa)	Number of amino acids residues	Biological properties	Recommendation grade against Helicobacter ¹						
β-Lactoglobulin	1.3	50%-55%	18277	162	Source of essential and branched chain amino acids	-						
α-Lactalbumin	1.2	20%-25%	14175	123	Primary protein found in human breast milk Source of essential and branched chain amino acids	D						
Immunoglobulins (A, B and C)	0.7	10%-15%	25000 (light chain) + 50000-70000 (heavy chain)	-	Primary protein found in colos- trum Immune modulating benefits	D						
Lactoferrin	0.1	1%-2%	80000	700	Antioxidant Antibacterial, antiviral, and antifungal Promotes growth of ben- eficial bacteria Naturally occurs in breast milk, tears, saliva, bile, blood, and mucus	Α						
Lactoperoxidase	0.03	0.50%	70000	612	Inhibits growth of bacteria	-						
Bovine Serum Albumin	0.4	5%-10%	66267	582	Source of essen- tial amino acids Large protein	-						
Glycomacropeptide	1.2	10%-15%	6700	64	Source of branched chain amino acids Lacks the aromatic amino acids phenylala- nine, tryptophan and tyrosine	D						

¹Grades of recommendations: A: At least one meta-analysis, systematic review, or RCT rated as 1++ and directly applicable to the target population or A systematic review of RCTs or a body of evidence consisting principally of studies rated as 1++ directly applicable to the target population and demonstrating overall consistency of results; B: A body of evidence including studies rated as 2++ directly applicable to the target population and demonstrating overall consistency of results or Extrapolated evidence from studies rated as 1++ or 1+; C: A body of evidence including studies rated as 2+ directly applicable to the target population and demonstrating overall consistency of results or Extrapolated evidence from studies rated as 2++; D: Evidence level 3 or 4 or Extrapolated evidence from studies rated as 2+.

sistent with the hypothesis that whey milk proteins may partly or completely explain the anti-Helicobacter properties of fermented milk based probiotic preparations.

Overall, the recommendation for fermented milk may be classified as Recommendation Grade-A. The magnitude of the benefit achieved by FMPPs is small (10%) but holds across a variety of preparations. FMPPs also carry the potential inherent advantage of better patient acceptability. Thus, they could offer a viable alternative for complementing traditional regimens. Further research is necessary to identify the active substrate/s and to define the exact product to be used, the optimal clinical setting (prevention/treatment, first line therapy/ recurrence, symptomatic/asymptomatic, gastritis/ulcer diseases, treatment failure *etc.*) and potential benefits in the setting of high antibiotic resistance.

WHEY PROTEINS

Whey proteins are globular water soluble molecules constituting 20% of the milk protein system. The whey protein profile, including general chemical, physicochemical and biological properties is depicted in Table 4. β -LG comprises the maximum percentage of whey protein but it has not been documented to possess any anti-bacterial properties. Other proteins have promising antibacterial

WJG | www.wjgnet.com

attributes and hence have been studied in *in vitro*, *in vivo* and in human trials. With specific reference to *H. pylori* infection and associated conditions lactoferrin, α -LA, glycomacropeptide and immunoglobulins appear to be potentially relevant and warrant further discussion.

Bovine lactoferrin

Bovine lactoferrin, an iron-binding glycoprotein, is a non-enzymatic antioxidant found in the whey fraction of fermented milk as well as in colostrum. The possibility that bLF may help to improve the H. pylori eradication rate was first conceived in 1997 when, in an in vitro study by Yamazaki et al^[43], bLf was found to be bactericidal to H. pylori in Brucella broth. Later in vitro studies have confirmed the same and yielded evidence of the possible mechanism of bactericidal action of bLf relating it to the high iron-binding affinity and prevention of iron utilization by *H. pylori*^{44,45]}. An additional mechanism based on the interaction of bLf with the bacterial surface is also suggested in the context of bactericidal effect on S. mutans and V. cholerae^[46]. It has been observed that bLf can bind to the outer membrane of Gram-negative bacteria and trigger the release of lipopolysaccharides, and kill the bacteria through osmotic damage^[47,48]. Building on the available evidence Wada *et al*^[49], in their study, examined the therapeutic effect of bLf on H. pylori infection using in vitro and in vivo experimental systems. In the experiment a significant inhibition of H. pylori binding to gastric epithelium was accomplished within 8 h after incubation. As a follow up experiment mice infected with H. pylori were given 10 mg of bLf orally every day and their stomachs were removed after 2 wk. 40.0% of all H. pylori attached themselves to the epithelium in the stomach of the untreated mice, whereas only 19.9% of the H. pylori did in the bLf-treated mice. However, in a similar experiment by Huynh *et al*⁵⁰, bLF, desferrioxamine and human recombinant lactoferrin had positive in vitro effects but all three failed to reduce H. pylori load in mice.

The above experimental evidence led to several human clinical trials. These are summarized in Table 5^[43,51-57]. As presented, 5 (of 7 available) positive clinical trials and a meta-analysis appear to establish the beneficial effect of bLf (4%-17% as per meta-analysis) on *H. pylori* eradication fairly well^[58]. The positive response was variously explained by the authors: (1) synergistic action of the antibiotics with bLf against H. pylori; (2) Inhibition of Helicobacter growth in an acidic pH by bLf; (3) Ability of bLf to bind to iron inhibiting growth of H. pylori; and (4) decrease in incidence of side effects and non-compliance. Two studies by Zullo et $al^{[56]}$ and Imoto et $al^{[57]}$ did not show any significant difference on addition of lactoferrin to triple therapy. In the first study this could be explained by the lack of synergism between lactoferrin and amoxicillin^[56]. Alternatively, the anti-bacterial effect of lactoferrin based on bacterial membrane damage of Gram negative bacteria could be marginalized when amoxicillin is administered. In the second study the authors using quadruple therapy (rabeprazole, clarithromycin, tinidazole and lactoferrin) showed a statistically insignificant improvement in the eradication rate (4% in ITT analysis and 7% in per-protocol analysis). The results of this trial are limited by marked geographical heterogeneity (multicentre trial) in eradication rates.

Although the available evidence suggests that bLf is beneficial (Recommendation Grade-A), the magnitude of the documented benefit is small. Given that it lacks the inherent advantage in patient acceptability (requires to be given as a drug), the concept that fermented milk potentially has a clinically significant benefit (other than suggesting that whey protein may be partly/completely responsible for the benefit with FMPP) remains unclear. Its role in various clinical settings and more so in the presence of high antibiotic resistance deserves further exploration.

α -LA

 α -LA is a major milk protein comprising 20-25% of whey proteins and has strong calcium binding ability. α -LA is reported to be biologically active in vivo with well-demonstrated antiulcer activity in rats. Matsumoto et al^[59], in an in vivo study using ethanol ulcer model rats, documented 82% reduction of ulcerative lesion index using 200 mg/kg bw of α -LA. Similar results were reported by Mezzaroba *et al*⁶⁰, with absolute alcohol and indomethacin ulcer model rats given commercial α -LA. This intervention resulted in 30%-70% reduction in the ulcerative lesion index in comparison with controls. The exact mechanism of the protective effect and its impact on Helicobacter is not well studied. However, as reported, whey protein concentrates have consistently shown anti-Helicobacter properties. The minimal evidence on the subject precludes any definitive comment on the potential of α -LA as an anti-Helicobacter agent. The paucity of literature on the subject presents wide scope for future research.

Glycomacropeptide

Glycomacropeptide (GMP), also referred to as caseinomacropeptide and caseinoglycopeptide, is formed when bovine κ -casein is hydrolysed into para- κ -casein, which remains with the curd, and GMP, which is removed with the whey. It constitutes 15%-20% of whey protein. GMP has also been found to have several immunomodulatory functions and antibacterial properties. Otani *et al*^[61] demonstrated that GMP, which contains sialic acid, inhibits the activity of *Salmonella typhimurium* lipopolysaccharide, inhibiting bacterial and viral adhesion especially to epithelial cells and dental plaque^[62,63]. Other relevant properties like suppression of gastric secretions in dogs have been reported by a study group^[64].

A study done in Japan attempted to enhance the ability of glycopeptides to bind pathogenic bacteria *in vivo* by conjugating with the non-digestible saccharides. The results of this study suggest that GMP could be a promising agent for preventing intestinal infection using its ability to bind pathogenic bacteria^[65]. In the context

Table 5 Studies comparing bovine lactoferrin with placebo or "standard therapy + bovine lactoferrin" with "standard therapy"									
Ref.	Type of trial	Evidence grade ¹	Quality rating ²	Subjects	Study design	Study groups	Outcome variable	Results and conclusion	
Sachdeva <i>et al</i> ^[58] , 2009, India	Metaanaly- sis	1+	++	subjects	Metaanalysis of human RCTs/CCTs	Trials had to be random- ized or quasi- randomized and controlled, using bLF in the intervention group treating <i>Helicobacter</i> -in- fected patients. The only differ- ence between the two groups had to be bLF	Eradica- tion of <i>H. pylori;</i> adverse events of eradi- cation therapy	The pooled odds ratio (5-stud- ies) for eradication by intention to treat analysis was 2.22 (95%CI: 1.44-3.44; P = 0.0003) using the fixed effects model (FEM) and 2.24 (95%CI: $1.15-4.35; P = 0.0003$) using the random effects model (REM) (Cochran's Q = 6.83; P = 0.145). The pooled risk difference was 0.11 (95%CI: $0.05 - 0.16; P = 0.0001$) by FEM (Cochran's Q = 6.67; P = 0.154) and 0.10 (95%CI: $0.04-0.17;P = 0.0023$) by REM. There was no significant difference in incidence of adverse effects	
Di Mario <i>et al</i> ^[51] , 2003, Italy	Human	1+	+	150 con- secutive <i>H. pylori-</i> positive patients suffer- ing from dyspeptic symptoms, gastritis and peptic ulcer dis- ease	RCT	Three groups – A-triple therapy (rabeprazole,cla rithromycin,tini dazole) with lac- toferrin for 7 d (n = 51), B-triple therapy for 7 d (n = 52), C- triple therapy for 10 d (n = 47)	standard triple ther- apy plus bovine lactofer- rin in the eradica-	Eradication rates (ITT) were A- 92.2%, B-71.2%, C-70.2 %. Results suggest that lactoferrin tested in the present study was effective in curing <i>H. pylor</i> i and could be a new agent to assist the antimicrobials in the eradication of the bacterium	
Di Mario <i>et al</i> ^[52] , 2006, Italy	Human	1+	+	402 con- secutive <i>H. pylori</i> - positive patients suffer- ing from dyspeptic symptoms, gastritis and peptic ulcer dis- ease	RCT	Three groups – A- triple therapy (esomeprazole, clarithromycin ,tinidazole) for 7 d (<i>n</i> = 136), B-lactoferrin fol- lowed by triple therapy for 7 d (<i>n</i> = 132), C- triple therapy with lactoferrin (<i>n</i> = 134)		Eradication rate (ITT)- A- 77%, B- 73%, C = 90%. Incidence of side effects was A- 9.5%, B- 9%, C- 8.2% Results demonstrate that bovine lactoferrin is an effective adjuvant to triple therapy for eradication of <i>H. pylori</i> Infection	
Okuda <i>et al</i> ^[53] , 2005, Japan	Human	1-	+	59 H. py- lori infected healthy volunteers or children who were enrolled in a previous epide- miological study	ССТ	Two groups- bLF (<i>n</i> = 31), placebo (<i>n</i> = 28)	Efficacy of a single admin- istration of bLF. Improve- ment of <i>H. pylori</i> infection, adverse effects	Positive response (> 50% decrease in C-UBT values) was observed in 10 of 31 bLF-treated subjects and 1 of 28 control subjects, indicating that the rate of positive response in the bLF group was significantly higher than that in the control group	
Tursi <i>et al</i> ^[54] , 2007, Italy	Human	1-	+	70 consecu- tive pa- tients with persistent <i>H. pylori</i> infection after failure of a first standard treatment	CCT	Two groups- A-quadruple therapy (ra- nitidine bismuth citrate plus triple therapy- esomeprazole ,amoxicillin, tinidazole) (n = 35), B- quadruple therapy plus lactoferrin (n = 35)	Effi- cacy and tolerabil- ity of bLF supple- mentation to this quadruple therapy in	Eradication rate- A-88.57%, B-94.28%. Side effects- A-29.41%, B-17.64%. bLF supplementation was found effective in reducing side-effect incidence. It seems capable of achieving a slight (NS statistically) improvement in eradi- cating <i>H. pylori</i>	

Zullo <i>et al</i> ⁽⁵⁵⁾ , 2005, Italy	Human	1+	++	133 con- secutive patients with non- ulcer dys- pepsia and <i>H. pylori</i> infection	RCT	Two groups- A- triple therapy for 7 d ($n = 68$), B- quadruple therapy (triple therapy plus lactoferrin) ($n =$ 65)	Eradica- tion rate of <i>H. pylori</i> infection, side ef- fects and compli- ance	Eradication rate (ITT) A- 77.9%, B- 76.9%. Side effects- A -10.3%, B- 9.2%. Quadruple therapy with bLF did not significantly increase the <i>H. pylori</i> cure rate of standard 7-d clarithromycin-amoxycillin based triple therapy in non-ulcer dyspep- sia patients
Zullo <i>et al</i> ⁽⁵⁶⁾ , 2007, Italy	Human	1+	+	144 con- secutive dyspeptic patients	RCT	Two groups – A- triple therapy (rabeprazole, levofoxacin, amoxycillin) (n = 72), B- qua- druple therapy (rabeprazole, clarithromycin, tinidazole plus bovine lactofer- rin) (n = 72)	Eradica- tion rate of <i>H. pylori</i> infection, side ef- fects and compli- ance	Eradication rate (ITT) A- 68.1%, B-72.2%. <i>H. pylori</i> eradication rate following both quadruple therapy with lactoferrin and a low-dose PPI, triple therapy with levofloxa- cin is disappointingly low
Imoto <i>et al</i> ^[57] , 2004	Human	FTNA	FTNA	25 <i>H. py-</i> <i>lori</i> positive healthy volunteers	ССТ	Two groups- A- bLf mixed with a commercial yogurt (<i>n</i> = 16) B- yogurt (<i>n</i> = 9)	Effect of bLf against H. pylori	The C-UBT values at week 8 were significantly lower than those at week 0 in the bLf group (<i>P</i> < 0.01), whereas no difference was observed in the control group

¹Levels of evidence: 1++ High quality meta-analysis, systematic reviews of RCTs, or RCTs with a very low risk of bias; 1+ Well conducted meta-analysis, systematic reviews of RCTs or RCTs or RCTs with a low risk of bias; 1- Meta-analysis, systematic reviews or RCTs or RCTs with a high risk of bias; 2++ High quality systematic reviews of case-control or cohort studies *or* High quality case-control or cohort studies with a very low risk of confounding, bias, or chance and a high probability that the relationship is causal; 2+ well conducted case control or cohort studies with a low risk of confounding, bias, or chance and a significant risk that the relationship is not causal; 3 Non-analytic studies, eg case reports, case series; 4 Expert opinion. ²Quality rating for individual studies: ++ Applies if all or most criteria from the checklist are fulfilled; where criteria are not fulfilled the conclusions of the study or review are thought unlikely to alter; + Applies if some of the criteria from the checklist are fulfilled; where criteria are not fulfilled or are not adequately described, the conclusions of the study or review are thought unlikely to alter; - Applies if few or no criteria from the checklist are fulfilled; where criteria are not fulfilled or are not adequately described, the conclusions of the study or review are thought unlikely to alter; - Applies if few or no criteria from the checklist are fulfilled; where criteria are not fulfilled; where criteria are not fulfilled or are not adequately described, the conclusions of the study or review are thought likely or very likely to alter. *H. pylori: Helicobacter pylori*; RCT: Randomised controlled trial; CCT: Controlled clinical trial; CT: Clinical trial; C-UBT: ¹³C-urea breath test; FTNA: Full text not available; NS: Not significant.

of *Helicobacter* infection several authors have expressed the view that GMP has gastroprotective properties^[66] but there is no direct evidence supporting its role in its eradication. Currently, in the absence of direct evidence the potential benefit of GMP in the treatment of *H. pylori* infection remains speculative.

Immunoglobulins

Immunoglobulins constitute a complex group, the elements of which are produced by B-lymphocytes. They make a significant contribution to the whey protein content (10-15%). Some of them attach to surfaces, where they behave as receptors, whereas others function as antibodies, which are released in the blood and lymph. Early et al^[67], in an *in vitro* study, demonstrated that whey protein concentrates produced using milk from H. pylori immunized cows contain antibodies that are active at the pH of the stomach, and bactericidal against H. pylori in vitro. Oona et al^{68]}, in their study on 20 children suffering from recurrent abdominal pain and with proven H. pylori infection, showed alleviation of gastritis and/or a decrease in the degree of colonization of the antrum mucosa in 9/14 children, and of the corpus mucosa in 7/15 children using immune colostrum of cows immunized (whole-cell vaccine prepared with H. pylori strain NCTC 11637) before calving. It is clear that evidence on

the *in vivo* effects of the immunoglobulin in prevention or treatment of *H. pylori* infections in humans is only suggestive and deserves further work.

CONCLUSION

In conclusion, FMPP and bovine lactoferrin appear to be beneficial in Helicobacter eradication (Evidence Grade-A or -B in various settings with level 1++ studies available). Evidence for α -lactabumin and whey protein concentrates enriched in immunoglobulins is "suggestive of benefit". However the studies are small and/or based on animals (level 3 or 4 studies only; no grading possible). Literature on glycomacropeptide is very preliminary precluding relevant inferences. No studies directly comparing the efficacy of individual components amongst themselves or to FMPP were available. Overall, the magnitude of the potential benefit documented so far for the group is small and the precise clinical settings are poorly defined. This restricts more widespread use of this group as a complementary therapy in a nutraceutical setting hinging on better patient acceptability/compliance. Further work is necessary to identify the optimal substrate, fermentation process, dose of administration and the ideal clinical setting (prevention/treatment, first line therapy/recurrence, symptomatic/asymptomatic, gastri-

WJG | www.wjgnet.com

tis/ulcer diseases *etc.*). The potential of this group in high antibiotic resistance or treatment failure settings presents interesting possibilities and deserves further exploration.

REFERENCES

- Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. *Lancet* 1984; 1: 1311-1315 [PMID: 6145023 DOI: 10.1016/ S0140-6736(84)91816-6]
- 2 **Rauws EA**, Tytgat GN. Cure of duodenal ulcer associated with eradication of Helicobacter pylori. *Lancet* 1990; **335**: 1233-1235 [PMID: 1971318 DOI: 10.1016/0140-6736(90)91301-P]
- 3 Brenes F, Ruiz B, Correa P, Hunter F, Rhamakrishnan T, Fontham E, Shi TY. Helicobacter pylori causes hyperproliferation of the gastric epithelium: pre- and post-eradication indices of proliferating cell nuclear antigen. *Am J Gastroenterol* 1993; 88: 1870-1875 [PMID: 7901989]
- 4 Boot H, de Jong D, van Heerde P, Taal B. Role of Helicobacter pylori eradication in high-grade MALT lymphoma. *Lancet* 1995; 346: 448-449 [PMID: 7623599 DOI: 10.1016/ S0140-6736(95)92823-5]
- 5 Chey WD, Wong BC. American College of Gastroenterology guideline on the management of Helicobacter pylori infection. *Am J Gastroenterol* 2007; **102**: 1808-1825 [PMID: 17608775 DOI: 10.1111/j.1572-0241.2007.01393.x]
- 6 Malfertheiner P. Compliance, adverse events and antibiotic resistance in Helicobacter pylori treatment. *Scand J Gastroenterol Suppl* 1993; 196: 34-37 [PMID: 8341989 DOI: 10.3109/003 65529309098341]
- 7 Ebringer L, Ferencík M, Krajcovic J. Beneficial health effects of milk and fermented dairy products--review. *Folia Microbiol* (Praha) 2008; **53**: 378-394 [PMID: 19085072 DOI: 10.1007/ s12223-008-0059-1]
- 8 Scottish Intercollegiate Guidelines Network checklist. Accessed on: 6.01.2009. Available from: URL: http://www.sign. ac.uk/methodology/checklists.html
- 9 Liddle J, Williamson M, Irwig L. Method for evaluating research and guideline evidence. Sydney: NSW Health Department, 1996
- 10 Harbour R, Miller J. A new system for grading recommendations in evidence based guidelines. *BMJ* 2001; 323: 334-336 [PMID: 11498496 DOI: 10.1136/bmj.323.7308.334]
- 11 Scottish Intercollegiate Guidelines Network. SIGN 50: a guideline developers' handbook. Edinburgh: SIGN: 2001. Available from: URL: http://www.sign.ac.uk/guidelines/ fulltext/50/
- 12 Marshall K. Therapeutic applications of whey protein. Altern Med Rev 2004; 9: 136-156 [PMID: 15253675]
- 13 Ornelas IJ, Galvan-Potrillo M, López-Carrillo L. Protective effect of yoghurt consumption on Helicobacter pylori seropositivity in a Mexican population. *Public Health Nutr* 2007; 10: 1283-1287 [PMID: 17381881 DOI: 10.1017/ S1368980007696372]
- 14 Sachdeva A, Nagpal J. Effect of fermented milk-based probiotic preparations on Helicobacter pylori eradication: a systematic review and meta-analysis of randomized-controlled trials. *Eur J Gastroenterol Hepatol* 2009; **21**: 45-53 [PMID: 19060631 DOI: 10.1097/MEG.0b013e32830d0eff]
- 15 Bekar O, Yilmaz Y, Gulten M. Kefir improves the efficacy and tolerability of triple therapy in eradicating Helicobacter pylori. J Med Food 2011; 14: 344-347 [PMID: 21186984 DOI: 10.1089/jmf.2010.0099]
- 16 Sýkora J, Valecková K, Amlerová J, Siala K, Dedek P, Watkins S, Varvarovská J, Stozický F, Pazdiora P, Schwarz J. Effects of a specially designed fermented milk product containing probiotic Lactobacillus casei DN-114 001 and the eradication of H. pylori in children: a prospective random

ized double-blind study. J Clin Gastroenterol 2005; **39**: 692-698 [PMID: 16082279 DOI: 10.1097/01.mcg.0000173855.77191.44]

- 17 Sheu BS, Cheng HC, Kao AW, Wang ST, Yang YJ, Yang HB, Wu JJ. Pretreatment with Lactobacillus- and Bifidobacteriumcontaining yogurt can improve the efficacy of quadruple therapy in eradicating residual Helicobacter pylori infection after failed triple therapy. *Am J Clin Nutr* 2006; **83**: 864-869 [PMID: 16600940]
- 18 Sheu BS, Wu JJ, Lo CY, Wu HW, Chen JH, Lin YS, Lin MD. Impact of supplement with Lactobacillus- and Bifidobacterium-containing yogurt on triple therapy for Helicobacter pylori eradication. *Aliment Pharmacol Ther* 2002; 16: 1669-1675 [PMID: 12197847 DOI: 10.1046/j.1365-2036.2002.01335.x]
- 19 Wang KY, Li SN, Liu CS, Perng DS, Su YC, Wu DC, Jan CM, Lai CH, Wang TN, Wang WM. Effects of ingesting Lactobacillus- and Bifidobacterium-containing yogurt in subjects with colonized Helicobacter pylori. *Am J Clin Nutr* 2004; 80: 737-741 [PMID: 15321816]
- 20 Miki K, Urita Y, Ishikawa F, Iino T, Shibahara-Sone H, Akahoshi R, Mizusawa S, Nose A, Nozaki D, Hirano K, Nonaka C, Yokokura T. Effect of Bifidobacterium bifidum fermented milk on Helicobacter pylori and serum pepsinogen levels in humans. *J Dairy Sci* 2007; **90**: 2630-2640 [PMID: 17517703 DOI: 10.3168/jds.2006-803]
- 21 Felley CP, Corthésy-Theulaz I, Rivero JL, Sipponen P, Kaufmann M, Bauerfeind P, Wiesel PH, Brassart D, Pfeifer A, Blum AL, Michetti P. Favourable effect of an acidified milk (LC-1) on Helicobacter pylori gastritis in man. *Eur J Gastroenterol Hepatol* 2001; 13: 25-29 [PMID: 11204805 DOI: 10.1097/00 042737-200101000-00005]
- 22 Cats A, Kuipers EJ, Bosschaert MA, Pot RG, Vandenbroucke-Grauls CM, Kusters JG. Effect of frequent consumption of a Lactobacillus casei-containing milk drink in Helicobacter pylori-colonized subjects. *Aliment Pharmacol Ther* 2003; 17: 429-435 [PMID: 12562457 DOI: 10.1046/j.1365-2036.2003.01452.x]
- 23 **Park MJ**, Kim JS, Yim JY, Jung HC, Song IS, Yu ES, Lee JJ, Huh CS, Baek YJ. The Suppressive Effect of a Fermented Milk Containing Lactobacilli on Helicobacter pylori in Human Gastric Mucosa. *Korean J Gastroenterol* 2001; **38**: 233-240
- 24 Kim MN, Kim N, Lee SH, Park YS, Hwang JH, Kim JW, Jeong SH, Lee DH, Kim JS, Jung HC, Song IS. The effects of probiotics on PPI-triple therapy for Helicobacter pylori eradication. *Helicobacter* 2008; **13**: 261-268 [PMID: 18665934 DOI: 10.1111/j.1523-5378.2008.00601.x]
- 25 Goldman CG, Barrado DA, Balcarce N, Rua EC, Oshiro M, Calcagno ML, Janjetic M, Fuda J, Weill R, Salgueiro MJ, Valencia ME, Zubillaga MB, Boccio JR. Effect of a probiotic food as an adjuvant to triple therapy for eradication of Helicobacter pylori infection in children. *Nutrition* 2006; 22: 984-988 [PMID: 16978844 DOI: 10.1016/j.nut.2006.06.008]
- 26 Song HJ, Lee HE, Kim SG, Kim JS, Kim WS, Jung HC, Song IS. The effect of a Lactobacilli-containing fermented milk on Helicobacter pylori eradication therapy: double-blind, placebo controlled, randomized study: WO047. J Gastroenterol Hepat 2005; 20 Suppl 2: A308
- 27 Canducci F, Armuzzi A, Cremonini F, Cammarota G, Bartolozzi F, Pola P, Gasbarrini G, Gasbarrini A. A lyophilized and inactivated culture of Lactobacillus acidophilus increases Helicobacter pylori eradication rates. *Aliment Pharmacol Ther* 2000; 14: 1625-1629 [PMID: 11121911 DOI: 10.1046/j.1365-2036.2000.00885.x]
- 28 Gotteland M, Poliak L, Cruchet S, Brunser O. Effect of regular ingestion of Saccharomyces boulardii plus inulin or Lactobacillus acidophilus LB in children colonized by Helicobacter pylori. Acta Paediatr 2005; 94: 1747-1751 [PMID: 16421034 DOI: 10.1111/j.1651-2227.2005.tb01848.x]
- 29 Lionetti E, Miniello VL, Castellaneta SP, Magistá AM, de Canio A, Maurogiovanni G, Ierardi E, Cavallo L, Francavilla R. Lactobacillus reuteri therapy to reduce side-effects

WJG www.wjgnet.com

during anti-Helicobacter pylori treatment in children: a randomized placebo controlled trial. *Aliment Pharmacol Ther* 2006; **24**: 1461-1468 [PMID: 17032283 DOI: 10.1111/j.1365-2036.2006.03145.x]

- 30 Nista EC, Candelli M, Cremonini F, Cazzato IA, Zocco MA, Franceschi F, Cammarota G, Gasbarrini G, Gasbarrini A. Bacillus clausii therapy to reduce side-effects of anti-Helicobacter pylori treatment: randomized, double-blind, placebo controlled trial. *Aliment Pharmacol Ther* 2004; 20: 1181-1188 [PMID: 15569121 DOI: 10.1111/j.1365-2036.2004.02274.x]
- 31 Myllyluoma E, Veijola L, Ahlroos T, Tynkkynen S, Kankuri E, Vapaatalo H, Rautelin H, Korpela R. Probiotic supplementation improves tolerance to Helicobacter pylori eradication therapy--a placebo-controlled, double-blind randomized pilot study. *Aliment Pharmacol Ther* 2005; **21**: 1263-1272 [PMID: 15882248 DOI: 10.1111/j.1365-2036.2005.02448.x]
- 32 Cindoruk M, Erkan G, Karakan T, Dursun A, Unal S. Efficacy and safety of Saccharomyces boulardii in the 14-day triple anti-Helicobacter pylori therapy: a prospective randomized placebo-controlled double-blind study. *Helicobacter* 2007; **12**: 309-316 [PMID: 17669103 DOI: 10.1111/ j.1523-5378.2007.00516.x]
- 33 Armuzzi A, Cremonini F, Bartolozzi F, Canducci F, Candelli M, Ojetti V, Cammarota G, Anti M, De Lorenzo A, Pola P, Gasbarrini G, Gasbarrini A. The effect of oral administration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori eradication therapy. *Aliment Pharmacol Ther* 2001; **15**: 163-169 [PMID: 11148433 DOI: 10.1046/j.1365-2036.2001.00923.x]
- 34 **Guo JB**, Yang PF, Wang MT. The application of clostridium to the eradication of Helicobacter pylori. *Chin J Celiopathy* 2004; **4**: 163-165
- 35 Armuzzi A, Cremonini F, Ojetti V, Bartolozzi F, Canducci F, Candelli M, Santarelli L, Cammarota G, De Lorenzo A, Pola P, Gasbarrini G, Gasbarrini A. Effect of Lactobacillus GG supplementation on antibiotic-associated gastrointestinal side effects during Helicobacter pylori eradication therapy: a pilot study. *Digestion* 2001; 63: 1-7 [PMID: 11173893 DOI: 10.1159/000051865]
- 36 Cremonini F, Di Caro S, Covino M, Armuzzi A, Gabrielli M, Santarelli L, Nista EC, Cammarota G, Gasbarrini G, Gasbarrini A. Effect of different probiotic preparations on antihelicobacter pylori therapy-related side effects: a parallel group, triple blind, placebo-controlled study. *Am J Gastroenterol* 2002; 97: 2744-2749 [PMID: 12425542 DOI: 10.1111/ j.1572-0241.2002.07063.x]
- 37 Tursi A, Brandimarte G, Giorgetti GM, Modeo ME. Effect of Lactobacillus casei supplementation on the effectiveness and tolerability of a new second-line 10-day quadruple therapy after failure of a first attempt to cure Helicobacter pylori infection. *Med Sci Monit* 2004; 10: CR662-CR666 [PMID: 15567983]
- 38 Cao YJ, Qu CM, Yuan Q, Wang S, Liang S, Yang X. Control of intestinal flora alteration induced by eradication therapy of helicobacter pylori infection in the elders. *Chin J Gastroenterol Hepatol* 2005; 14: 195-199
- 39 Pantoflickova D, Corthésy-Theulaz I, Dorta G, Stolte M, Isler P, Rochat F, Enslen M, Blum AL. Favourable effect of regular intake of fermented milk containing Lactobacillus johnsonii on Helicobacter pylori associated gastritis. *Aliment Pharmacol Ther* 2003; 18: 805-813 [PMID: 14535874 DOI: 10.1046/ j.1365-2036.2003.01675.x]
- 40 Horie K, Horie N, Abdou AM, Yang JO, Yun SS, Chun HN, Park CK, Kim M, Hatta H. Suppressive effect of functional drinking yogurt containing specific egg yolk immunoglobulin on Helicobacter pylori in humans. *J Dairy Sci* 2004; 87: 4073-4079 [PMID: 15545368 DOI: 10.3168/jds. S0022-0302(04)73549-3]
- 41 Sakamoto I, Igarashi M, Kimura K, Takagi A, Miwa T, Koga Y. Suppressive effect of Lactobacillus gasseri OLL 2716 (LG21) on Helicobacter pylori infection in humans. J Antimicrob

Chemother 2001; **47**: 709-710 [PMID: 11328791 DOI: 10.1093/ jac/47.5.709]

- 42 **Tong JL**, Ran ZH, Shen J, Zhang CX, Xiao SD. Meta-analysis: the effect of supplementation with probiotics on eradication rates and adverse events during Helicobacter pylori eradication therapy. *Aliment Pharmacol Ther* 2007; **25**: 155-168 [PMID: 17229240 DOI: 10.1111/j.1365-2036.2006.03179.x]
- 43 Yamazaki N, Yamauchi K, Kawase K, Hayasawa H, Nakao K, Imoto I. Antibacterial effects of lactoferrin and a pepsin-generated lactoferrin peptide against Helicobacter pylori in vitro. *J Infect Chemother* 1997; 3: 85-89 [DOI: 10.1007/BF02490180]
- 44 Dial EJ, Hall LR, Serna H, Romero JJ, Fox JG, Lichtenberger LM. Antibiotic properties of bovine lactoferrin on Helicobacter pylori. *Dig Dis Sci* 1998; 43: 2750-2756 [PMID: 9881510]
- 45 **Brock JH**. Lactoferrin in human milk: its role in iron absorption and protection against enteric infection in the newborn infant. *Arch Dis Child* 1980; **55**: 417-421 [PMID: 7002055 DOI: 10.1136/adc.55.6.417]
- 46 Schryvers AB, Bonnah R, Yu RH, Wong H, Retzer M. Bacterial lactoferrin receptors. *Adv Exp Med Biol* 1998; 443: 123-133 [PMID: 9781351 DOI: 10.1007/978-1-4757-9068-9_15]
- 47 Yamauchi K, Tomita M, Giehl TJ, Ellison RT. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. *Infect Immun* 1993; 61: 719-728 [PMID: 8423097]
- 48 Naidu SS, Svensson U, Kishore AR, Naidu AS. Relationship between antibacterial activity and porin binding of lactoferrin in Escherichia coli and Salmonella typhimurium. *Antimicrob Agents Chemother* 1993; 37: 240-245 [PMID: 8383941 DOI: 10.1128/AAC.37.2.240]
- 49 Wada T, Aiba Y, Shimizu K, Takagi A, Miwa T, Koga Y. The therapeutic effect of bovine lactoferrin in the host infected with Helicobacter pylori. *Scand J Gastroenterol* 1999; 34: 238-243 [PMID: 10232866 DOI: 10.1080/00365529950173627]
- 50 Huynh HQ, Campbell MA, Couper RT, Tran CD, Lawrence A, Butler RN. Lactoferrin and desferrioxamine are ineffective in the treatment of Helicobacter pylori infection and may enhance H. pylori growth and gastric inflammation in mice. *Lett Appl Microbiol* 2009; 48: 517-522 [PMID: 19187488 DOI: 10.1111/j.1472-765X.2009.02557.x]
- 51 Di Mario F, Aragona G, Dal Bò N, Cavestro GM, Cavallaro L, Iori V, Comparato G, Leandro G, Pilotto A, Franzè A. Use of bovine lactoferrin for Helicobacter pylori eradication. *Dig Liver Dis* 2003; **35**: 706-710 [PMID: 14620619 DOI: 10.1016/S1590-8658(03)00409-2]
- 52 Di Mario F, Aragona G, Dal Bó N, Cavallaro L, Marcon V, Olivieri P, Benedetti E, Orzès N, Marin R, Tafner G, Chilovi F, De Bastiani R, Fedrizzi F, Franceschi M, Salvat MH, Monica F, Piazzi L, Valiante F, Vecchiati U, Cavestro GM, Comparato G, Iori V, Maino M, Leandro G, Pilotto A, Rugge M, Franzè A. Bovine lactoferrin for Helicobacter pylori eradication: an open, randomized, multicentre study. *Aliment Pharmacol Ther* 2006; 23: 1235-1240 [PMID: 16611285 DOI: 10.1111/ j.1365-2036.2006.02851.x]
- 53 Okuda M, Nakazawa T, Yamauchi K, Miyashiro E, Koizumi R, Booka M, Teraguchi S, Tamura Y, Yoshikawa N, Adachi Y, Imoto I. Bovine lactoferrin is effective to suppress Helico-bacter pylori colonization in the human stomach: a randomized, double-blind, placebo-controlled study. *J Infect Chemother* 2005; **11**: 265-269 [PMID: 16369731 DOI: 10.1007/s10156-005-0407-x]
- 54 Tursi A, Elisei W, Brandimarte G, Giorgetti GM, Modeo ME, Aiello F. Effect of lactoferrin supplementation on the effectiveness and tolerability of a 7-day quadruple therapy after failure of a first attempt to cure Helicobacter pylori infection. *Med Sci Monit* 2007; 13: CR187-CR190 [PMID: 17392649]
- 55 Zullo A, De Francesco V, Scaccianoce G, Hassan C, Panarese A, Piglionica D, Panella C, Morini S, Ierardi E. Quadruple therapy with lactoferrin for Helicobacter pylori eradication: a randomised, multicentre study. *Dig Liver Dis* 2005; 37: 496-500 [PMID: 15975536 DOI: 10.1016/j.dld.2005.01.017]

- 56 Zullo A, De Francesco V, Scaccianoce G, Manes G, Efrati C, Hassan C, Maconi G, Piglionica D, Cannaviello C, Panella C, Morini S, Ierardi E. Helicobacter pylori eradication with either quadruple regimen with lactoferrin or levofloxacinbased triple therapy: a multicentre study. *Dig Liver Dis* 2007; **39**: 806-810 [PMID: 17644057 DOI: 10.1016/j.dld.2007.05.021]
- 57 Imoto I, Okuda M, Nakazawa T, Miyashiro E, Yamauchi K, Takakura N, Teraguchi S, Tamura Y, Adachi Y. Suppressive effect of bovine lactoferrin against Helicobacter pylori. *Milk Science* 2004; 9: 576-577
- 58 Sachdeva A, Nagpal J. Meta-analysis: efficacy of bovine lactoferrin in Helicobacter pylori eradication. *Aliment Pharmacol Ther* 2009; 29: 720-730 [PMID: 19183156 DOI: 10.1111/ j.1365-2036.2009.03934.x]
- 59 Matsumoto H, Shimokawa Y, Ushida Y, Toida T, Hayasawa H. New biological function of bovine alpha-lactalbumin: protective effect against ethanol- and stress-induced gastric mucosal injury in rats. *Biosci Biotechnol Biochem* 2001; 65: 1104-1111 [PMID: 11440124 DOI: 10.1271/bbb.65.1104]
- 60 Mezzaroba LFH, Carvalho JE, Ponezi AN, Antônio MA, Monteiro KM, Possenti A, Sgarbieri VC. Antiulcerative properties of bovine α-lactalbumin. *Int Dairy J* 2006; 16: 1005-1012 [DOI: 10.1016/j.idairyj.2005.10.027]
- 61 **Otani H**, Monnai M, Hosono A. Bovine k-casein as inhibitor of the proliferation of mouse splenocytes induced by lipopolysaccharide stimulation. *Milchwissenschaft* 1997; **47**:

512-515

- 62 Neeser JR. Anti-plaque and anticaries agent. United States patent 4994441. 1991
- 63 Neeser JR. Anti-plaque and anticaries agent. United States patent 4992420. 1991
- 64 Vasilevskaia LS, Stan EIa, Chernikov MP, Shlygin GK. [Inhibiting action of glycomacropeptide on stomach secretion induced by various humoral stimulants]. *Vopr Pitan* 1977; (4): 21-24 [PMID: 20692]
- 65 Nakajima K, Tamura N, Kobayashi-Hattori K, Yoshida T, Hara-Kudo Y, Ikedo M, Sugita-Konishi Y, Hattori M. Prevention of intestinal infection by glycomacropeptide. *Biosci Biotechnol Biochem* 2005; 69: 2294-2301 [PMID: 16377886 DOI: 10.1271/bbb.69.2294]
- 66 Gotteland M, Brunser O, Cruchet S. Systematic review: are probiotics useful in controlling gastric colonization by Helicobacter pylori? *Aliment Pharmacol Ther* 2006; 23: 1077-1086 [PMID: 16611267 DOI: 10.1111/j.1365-2036.2006.02868.x]
- 67 Early EM, Hardy H, Forde T, Kane M. Bactericidal effect of a whey protein concentrate with anti-Helicobacter pylori activity. J Appl Microbiol 2001; 90: 741-748 [PMID: 11348434 DOI: 10.1046/j.1365-2672.2001.01301.x]
- 68 Oona M, Rägo T, Maaroos H, Mikelsaar M, Lõivukene K, Salminen S, Korhonen H. Helicobacter pylori in children with abdominal complaints: has immune bovine colostrum some influence on gastritis? AAMJ 1997; 6: 49-57

P- Reviewers: Bugaj AM, De Re V, Jonaitis L, Koulaouzidis A, Mohammadi M, Nakajima H, Tovey FI S- Editor: Ma YJ L- Editor: O'Neill M E- Editor: Liu XM

Published by Baishideng Publishing Group Co., Limited

Flat C, 23/F., Lucky Plaza, 315-321 Lockhart Road, Wan Chai, Hong Kong, China Fax: +852-65557188 Telephone: +852-31779906 E-mail: bpgoffice@wjgnet.com http://www.wjgnet.com

ISSN 1007-9327

