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Abstract: Structural abnormalities causing DNA modifications of the ethene and propanoadducts
can lead to mutations and permanent damage to human genetic material. Such changes may cause
premature aging and cell degeneration and death as well as severe impairment of tissue and organ
function. This may lead to the development of various diseases, including cancer. In response to
a damage, cells have developed defense mechanisms aimed at preventing disease and repairing
damaged genetic material or diverting it into apoptosis. All of the mechanisms described above
are part of the repertoire of action of Lactoferrin—an endogenous protein that contains iron in its
structure, which gives it numerous antibacterial, antiviral, antifungal and anticancer properties. The
aim of the article is to synthetically present the new and innovative role of lactoferrin in the protection
of human genetic material against internal and external damage, described by the modulation
mechanisms of the cell cycle at all its levels and the mechanisms of its repair.

Keywords: lactoferrin; oxidative stress; DNA damage; DNA glycosylases

1. Introduction

Lactoferrin (LF) is a glycoprotein belonging to the group of transferrins, i.e., proteins
capable of binding and transferring iron ions. It was first isolated from cow’s milk in 1939.
In 1960, 3 independent laboratories confirmed that LF is the main iron-binding protein in
human milk. Intriguingly, human and beef LF are characterized by very high compatibility
in terms of structure (77%), while the functionality is practically identical, therefore, due
to easier extraction, beef LF is used for research and added to food products and dietary
supplements [1–4]. LF is present in milk of various species of mammals, including cows,
pigs, mice, and humans [5–8]. Its major functions are antioxidant, antimicrobial and anti-
inflammatory [9,10]. Moreover, it has been postulated as a biomarker in the diagnosis of
certain diseases such as inflammatory bowel disease (IBD), Alzheimer’s disease (AD) and
dry eye disease (DED) [11–13]. LF multifunctionality is a result of interactions with vari-
able hosts’ and microbial molecules (such as: cell receptors, glycosaminoglycans—GAGs,
lysozyme, nucleic acids, lipoteichoic acid—LTA, lipopolysaccharide—LPS) as well as iron
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deprivation and nuclear DNA binding [14–25]. Many studies showed that LF acts as a tran-
scription factor [26] triggering the expression of a variety of genes, including genes related
to the innate immune response [27], lipid metabolism (fatty acid oxidation, elongation,
synthesis and degradation) [28,29], and heterogeneous metabolism and lysosomal degrada-
tion [30,31]. Nonetheless, the protective role of LF against human DNA damage resulting
from environmental, biological and physiological conditions is still poorly documented.
The proper balance between DNA repair, proliferation, and apoptosis prevents mutations
accumulation within human genome, genomic instability and in consequence development
of a broad spectrum of diseases. This article is an attempt to overview the multitude of
DNA damaging factors and answer the question of how lactoferrin can influence these
processes and protect host genetic material, in overall perspective.

2. DNA Damage

DNA carries the information necessary for the structure and function of cells, thus
DNA damages are a serious problem for the organism. DNA damage can lead to mutations
and the latter can cause various diseases, including cancers. Damage to DNA is a change
in its structure, such as modification of a nucleotide, or interruption of both or one strand
of DNA. Replication of DNA with a damaged nucleotide results in the insertion of an
incorrect nucleotide in the complementary strand. Breaking both DNA strands can also
result in incorrect repair and lead to a change in the DNA sequence. These changes can lead
to damage to the structure of the chromosome, alter the information in the gene, cause the
gene to malfunction or lead to its dysregulation. DNA damage in proliferating cells often
leads to carcinogenesis, whereas DNA damage in non-dividing differentiated cells results
in the accumulation of abnormalities, blocked transcription, reduced gene expression and
premature ageing and cell death [32]. Many exogenous and endogenous factors can cause
DNA damage [33–36].

2.1. DNA–Damaging Factors

The DNA of mammalian cells, including humans, is constantly exposed to various
internal (lipid peroxidation induced by oxidative stress) and external factors (e.g., Roentgen
radiation, UV radiation, chemical compounds present in the air and inhaled) that may
affect its modifications. DNA damage, that ultimately can lead to mutations and genomic
instability, is due to many factors, such as oxidative stress, metabolic disorders, viral and
microbial pathogens, excess cellular proliferation and chemical factors.

Numerous literature data indicate that also mucochloric acid present in drinking
water, soft drinks, oxygen and nitrogen from the air, and methylation factors can contribute
to the modification of nucleic acids in all living cells [35,36]. Unrepaired DNA lesions
(adducts) can lead to various types of pro-inflammatory morphological changes in the cell
structure, including permanent and irreversible damage to mitochondria leading to cell
death, various types of carcinogenesis, aging, and a wide spectrum of neurodegenerative
diseases such as Wilson’s, Alzheimer’s and Parkinson’s diseases [37]. Exocyclic DNA
adducts, which include 1,N6-ethenoadenine (EA), 3,N4-ethenocytosine-(EC) and N2,3-
ethenoguanine-(EG), show mutagenic, teratogenic and clastogenic effects in E. coli as well
as mammalian cells [34,35,37–39] (Figure 1).

2.1.1. Chemical Factors

The external factors modifying DNA include: gamma and beta radiation, X-rays,
various carcinogenic chemical compounds—vinyl chloride (VC) or chloroacetaldehyde
(CAA) or drugs taken orally. These compounds, especially active ingredients of drugs,
participate in the cellular metabolism leading to DNA damage in the cell. Moreover, they
can also induce inflammation of precancerous lesions in tissues [34–36,40].
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Figure 1. DNA damaging internal and external factors causing formation of etheno and propano
base derivatives.

Also tobacco smoke is known to contain over 5000 substances, of which over 150 show
toxicity, together with mutagenic and/or carcinogenic effects. The most potent carcino-
gens in tobacco smoke include acrolein, acrylonitrile, acetaldehyde, formaldehyde and
ethylene oxide [41]. Repair processes play a key role in preventing carcinogenesis and the
development of other diseases resulting from DNA damage. Therefore, of great concern is
the occurrence of mutations in genes encoding proteins that recognize damaged genetic
material, activate the repair process, or repair damaged DNA. Specifically, the genotoxic
properties of chemical agents disrupt the mechanisms of base excision repair (BER) and
nucleotide excision repair (NER) [35,36,39]. The most common causes of inactivation
of these important genes include point mutations within the gene, deletions, insertions,
gene conversion and epigenetic silencing [42]. This leads to impaired DNA repair and
accumulation of abnormalities resulting in the above-mentioned outcomes.

2.1.2. Biological Factors

DNA damage may also occur during viral and intracellular microbial infections as
a result of pathogen mediated genotoxicity or pathogen interference with host cell repair
processes [43]; (Figure 2). The host cellular pathways responsible for DNA repair could be
impaired by microbial proteins resulting in accumulation of mutations, genome instability
and finally increase risk of cancer development. Moreover, microorganisms may modulate
gene expression, activate oncogens or inactivate tumor suppressor genes favouring cellular
transformation [44]. The best well known DNA and RNA viruses associated with cancers
are HTLV-1, HPV, HBV, HCV, EBV, and KSHV [43]. They modify cell cycle function,
dysregulate DNA damage signalling, and repair pathways (DDR kinases) inducing tumor
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development, supporting tumor promotion and spreading [45–48]. The mechanism leading
to DNA damage as a result of human papillomavirus infection is very interesting. HPV
reduces p53 expression levels during reactive nitrogen species (RNS) stress, leading to an
increase in DNA damage [48].

Figure 2. Major factors causing DNA damage and the protective effects of lactoferrin. Factors
of external and internal origin as well as bacterial and viral infections can lead to mutations and
permanent damage to human genetic material, causing premature aging and cell death, as well as
severe impairment of the functions of tissues and organs, which in turn may lead to the development
of various diseases, including cancer. In response to these carnivores, cells have developed defense
mechanisms to prevent disease and repair damaged genetic material in the form of equal repair
systems, such as BER or NER, or by diverting the cell to apoptosis. The protein supporting these
mechanisms is Lactoferrin—an endogenous protein which, due to its unique structure, has numerous
antibacterial, antiviral, antifungal and anticancer properties. These properties help to bind to damaged
(modified) DNA, which supports the functioning of the mechanisms modulating the cell cycle at all
its levels and the mechanisms of its repair. Illustration was created in BioRender.com (accessed on
21 April 2022).

Moreover, host cell’s DNA may undergo damage upon several bacterial infections such
as Helicobacter pylori [49], Listeria monocytogenes [50], E.coli [51], Mycoplasma fermentans [52],
Shigella [53] and Neisseria gonorrhoeae [54]. Handa and colleagues showed that Helicobacter
pylori infection induces increased production of oxygen free radicals and RNS in the
stomach damaging the DNA of gastric epithelial cells [49]. The mechanisms of bacterial
action include enhancement of DNA-damage accumulation, and also inhibition of p53-
activities and/or cell cycle arrest [55] influenced through toxins, or due to activation of the
immune response [56,57]. Lipopolysaccharides, major components of the outer membrane
of Gram-negative bacteria, increase intracellular ROS levels through mitochondrial derived
NADPH oxidase, inducing macrophages and neutrophils. Mitochondrial dysfunction is
the result of mtDNA depletion and inhibition of mitochondrial transcription. Additionally,

BioRender.com
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LPS increases the level of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxoG), biomarker of
DNA oxidative damage, in nuclear DNA in the same way as H2O2 [58].

2.1.3. Physiological Conditions

Numerous natural processes in the organism including breathing and digestion leads
to production of harmful free radicals contributing to DNA damage. In addition, an
unhealthy lifestyle including smoking, alcohol consumption, poor diet, or exposure to other
harmful environmental factors can exacerbate oxidative stress [59]. According to “oxidative
stress theory” of aging the increase in ROS is closely associated with the aging process
and leads to functional changes and pathological states e.g., neoplastic transformation
or neurodegenerative diseases [60–62]. Both nuclear and mitochondrial DNA damage
induced by oxidative stress that are additionally linked with age-related metabolic changes
in the human body, among others, accumulates over time. DNA damage and mutations,
a consequence of faulty DNA repair, have been confirmed to accumulate with age and
their consequences progressively impede cellular function and increase vulnerability to the
development of chronic disorders associated with aging [61,63,64].

2.2. Oxidative Stress and Repair Mechanisms

Oxidation of polyunsaturated fatty acids through ROS in the so-called lipid perox-
idation results in the formation of several main products, which include: malondialde-
hyde (MDA) and trans-4-hydroxy-2-nonenal (HNE), crotonaldehyde and 2,3-epoxy-4-
hydroxynonanal [65]. The resulting derivatives can strongly modify DNA and inactivate
functional DNA repair proteins from the group of glycosylases by sequential cross-linking,
thus affecting important metabolic pathways in the body [65]. Under typical conditions
of cell growth and development, the excessive production and neutralization of ROS also
depends on the action of antioxidant enzymes, which include: superoxide dismutase, cata-
lase and glutathione peroxidase, xanthine oxidase and repair enzymes of the BER and NER
pathway, TLS and the SOS system. Deficiency of these enzymes in the cell disrupts its home-
ostasis and leads to the excessive production of oxygen radicals, including the superoxic
and hydroxyl radical anion in the Haber-Weiss-Fenton reaction [66–68]. A typical example
is cells exposed to UV radiation, showing an excessive level of ROS-induced damage
through DNA modification [69,70] and the secretion of pro-inflammatory cytokines [71,72].
An example of a modification in genomic DNA is 2′-deoxyguanosine, which leads to
damage in the strand to oxidized 8-hydroxy-2′-deoxyguanosine (8-OHdG) [70]. 8-OHdG,
considered a new and typical biomarker of DNA oxidative damage similar to the CRP
protein, is a modification recognized by several repair systems, such as BER, NER or
Mismatch Repair, TCR, with the participation of the Fpg protein encoded by the OGG1
enzyme [69,71].

3. Lactoferrin

Human LF is highly multifunctional protein that reflects several enzymatic activities.
It is able to bind and hydrolyse DNA [20–24] as well as RNA [21,25,32,33], acts as a specific
transcription activator of DNA sequences [6,23], binds to various nucleotides showing
ATPase and phosphatase activities [6,21,34,35]. Lactoferrin has also been shown to bind
oligo- and polysaccharides with amylase activity [6,73]. Moreover, it possesses cytotoxic
properties and induces apoptosis [21]. LF plays an important function in the homeostasis
of the entire immune system, reduces oxidative stress at the molecular level as well as local
inflammation [6–8]. The multiplicity and variety of LF properties makes it could be referred
to as the “guardian of the genome” (Figure 2).

The beneficial effects and a potential clinical utility of LF different types: bovine LF
(bLF), human LF (hLF), recombinant hLF (rhLF), intracellular delta-lactoferrin (delta LF),
conformational states: apo-LF (open iron-free form) and holo-LF (closed iron-binding form),
and fragments: lactoferricin (the N-terminal region of lactoferrin) are investigated [74].
The majority of research concern on bLF properties that shares a 69% amino acid se-
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quence homology with hLF [75] but reflects differences in glycosylation pattern (deter-
mining protein structure, biological function, stability and influence immunogenicity
and antigenicity [76–79]. Wherefore for clinical use rhLf has been expressed in different
expression systems and cell types: BHK cells, Sf9 insect cells CHO cells; plants: rice;
fungi: Aspergillus niger; yeast: Pichia pastoris; and transgenic animals (cow, goat, sheep,
mouse) [80–84]. Interestingly, delta LF acts as a transcription factor. It adhere to the cell
membrane and, after internalisation from the cell surface, localize within nucleus [85] as
well in the cell’s cytoplasm [86–89]. Liu and colleagues suggest that delta LF protein is
formed by expression of the LF gene from the alternative P2 promoter, resulting in a 73 kDa
intracellular delta LF protein [88].

3.1. Lactoferrin as a Human Genome “Guardian” (Indirect and Direct Action)

LF role as DNA protective factor may be dual and results from its indirect or direct
action on human genome (Table 1).

Table 1. Lactoferrin properties and mechanism of action—DNA protection in direct and indirect way.

Form of DNA
Protection LF Properties Mechanism Ref.

In
di

re
ct

Iron saturation
- antioxidant activity (iron chelation)
- reduction of oxidative damage (modulation of iron level)
- inhibition of bacteria growth

[2,90,91]
[6,31,84]
[84]

Immune
modulation

- inhibition of pro-inflammatory cytokines production;
- stimulation of anti-inflammatory cytokines production;
- stimulation of T and B cells maturation;
- LPS binding

[24,92–95]
[25,93,96],
[4,22,97,98]
[33,99–101],

Antitumor

- inhibition of angiogenesis;
- iron binding (necessary for cell growth);
- inhibition of cell proliferation;
- apoptosis induction;
- stimulation of lymphocytes, leukocytes and NK activity;
- increasing of surface receptors expression on neoplastic cells

(identify by the immune system);

[74,102]
[79]
[103–107]
[108–114]
[103,115]
[116]

Antimicrobial

Antibacterial:
- destruction of bacterial cells (due to: cell wall damage, LPS

release or pore proteins binding);
- inhibition of bacteria adhesion to the host cells (by degrading

bacterial adhesins);
- inhibition of biofilm formation;
- iron binding (necessary for the growth of bacteria);
- increasing the activity of the immune system;
- increasing the sensitivity of bacteria to antibiotics;
Antiviral
- inhibition of host cell infection (binding to viral surface

proteins or blocking receptors on host cells);
- inhibition of viral replication;
- stimulation of T lymphocytes to increase the antiviral activity

of NK cells;
Antiparasitic
- cell destruction (the cell membrane damage, generation of

free radicals);
- stimulation of phagocytes activity;
- increasing the sensitivity of pathogens to drugs;
Antifungal
- direct cytotoxic effect;
- increasing the sensitivity of pathogens to drugs;
- stimulation of leukocyte activity;

[9,117,118]
[119]
[120]
[121]
[79,93]
[122]
[123–125],
[126]
[125,127]
[79,128]
[129,130]
[131,132]
[133]
[134]
[135]
[136,137]
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Table 1. Cont.

Form of DNA
Protection LF Properties Mechanism Ref.

D
ir

ec
t

DNA binding

Gene expression modulation
- DNA repair
- Cell cycle regulation
- Apoptosis regulation
- Immune response modulation:

X the cytotoxic functions of NK and
lymphokine-activated killer cells enhancement;

X cytokine synthesis modulation
LF degradation by free radicals

[26,138–143]
[91]

Elimination of DNA damaging factors (e.g., hydroxyl radicals, microbes, up-regulated
immune cells) or consequences (e.g., cancer cells), without interaction with host genetic
material, could be pointed as an indirect mechanism of DNA protection by LF. These
mechanisms included iron saturation, scavenging hydroxyl radicals, cell cycle modulation,
antimicrobial and anti-inflammatory function.

On the other hand its direct action concern on the ability to DNA binding, hydrolyza-
tion of nucleic acids as well as degradation instead of DNA [6,73,91]. All direct actions of
lactoferrin are included in Figure 3.

Figure 3. Lactoferrin direct action. LF acts as a multipotent protective factor both by acting on DNA,
activating transcription factors, gene expression, regulating the cell cycle, differentiation and leading
to the death of cells that threaten the body, such as cancer cells.

3.2. Examples of LF (Indirect and Direct) Functions Providing Protection of the Human
Genome—An Overview
3.2.1. LF as a Transcription Factor—A Similar to p53 Mode of Action

Human LF possesses two DNA binding sites that interact with nonspecific and specific
DNA [140] and the ability to activate specific DNA sequences as a unique transcription
factor [10]. LF action is very similar to p53 protein through its capacity to bind the DNA
and potency to stimulate the expression of a number of genes such as Bax, SelH, DcpS,
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UBE2E1, Skp1 and GTF2F2 and regulate cell cycle, apoptosis and cell differentiation. LF in
similar way to p53 protein can enters the cell nucleus [144–146] where it binds to specific
DNA sequences, thus regulating the transcription of anti-inflammatory cytokine genes,
genes promoting apoptotic cell death, and these genes that codes proteins showing anti-
proliferating and anti-cancer activity [141,147–149]. In addition, LF has been shown to
transactivate the p53 through the activation of nuclear factor NF-κB and in this specific way
regulate the p53 tumor suppressor gene [142]. In fact, LF acts similarly to p53, which is
a good known “guardian of the genome” that helps maintain the genetic integrity of the
cell after DNA damage. Lactoferrin is believed to act as a sensor for damaged DNA; once
the DNA damage is extensive and unrepairable, this protein can kill the cell by inducing
apoptosis, when the DNA damage is fairly minor and repairable, similarly, p53 stops the
cell in the G1 phase to permit DNA repair mechanisms to work [104,107].

3.2.2. LF in ROS Ratio Control

The protein that regulates the concentration of iron ions in plasma and transports
them to tissues is transferrin (a glycoprotein). The body contains about 3 to 4 g of iron,
a component necessary for key biological processes, which may be involved in the cell’s
response to oxidative stress, participates in the transport of oxygen to the body’s cells,
affects cholesterol metabolism and promotes detoxification and indirectly contributes to
the synthesis of serotonin, prostaglandins, nitric oxide, and the production of thyroid
hormones. It also participates in the synthesis of DNA and plays an important role in
fighting viruses and bacteria by the immune system [39,66].

An example of transferrin is LF: which is produced mainly by the epithelium of the
mucosa of mammalian cells. Therefore, it is abundant in the milk of mammals and other
secreted fluids, such as tears, saliva, pancreatic juice, and is present in the granules of
multinucleated leukocytes [3,22–24]. LF exhibits variable properties such as antioxidant,
anti-inflammatory and antimicrobial. Therefore, it plays an important role in the body’s
defense against infections and may exert an anti-inflammatory effect by inhibiting the
formation of hydroxyl free radicals [36,37,40]. Through its antioxidant properties, LF can
prevent DNA damage, thereby preventing tumor formation. A potential mechanism by
which LF reduces oxidative damage at the cellular and tissue levels after LPS is modulation
of iron level in the cell (Figure 4). LF has been demonstrated to possess a significant
antioxidant activity due to direct iron chelation or enhancing the activity of key antioxidant
enzymes such as superoxide dismutase, glutathione peroxidase (GPx), catalase, which are
directly involved in ROS scavenging [90]. LF protects against oxidative damage in the
mitochondria and for example indicate its potential in the prevention and treatment of
systemic inflammatory response syndrome and its transition to septic conditions in vivo
and the development of neurodegenerative diseases [21,33].

Moreover, the protective effect of LF against oxidative DNA damage has been shown
to be related to scavenging ROS independent of its iron chelating activity and also to
LF degradation by free radicals instead of DNA damage [91]. Interestingly, LF is more
susceptible to degradation than other cow’s milk proteins.

3.2.3. Human Immune System Regulation

Several effects of LF on immune function and inflammation regulation have been
described, although contrasting results were frequently reported: (1) limitation of the
immune system response and reduction the risk of cell damage, e.g., in the case of infections
and non-infectious disorders such as arthritis, allergies or cancer [150] and (2) stimulation
of the immune response: anti-cancer and anti-microbial effect [21,96].

LF is able to support the proliferation, differentiation and activation of immune cells
by direct interactions with cell surface components and to strengthen their responses.
Furthermore, enhancement of the immune response may result not only from the ability
of LF to remove iron deposits, but also from the modulation of cytokine expression and
effects on immune cell migration and lytic and phagocytic activity [96].
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Figure 4. Protective role of LF against mitochondrial damage. Mitochondrial damage is a phe-
nomenon that occurs in various diseases. LF can protect mitochondria by multiple mechanisms,
acting as an antipathogenic agent and activating immune cell responses.

Decrease of Inflammation and Cell Damages—Immunosuppression

The anti-inflammatory activity of bLF supports the injury improvement and pre-
vents tissue damages during the development of inflammation [93,95,151]. Due to its
antibacterial action and the binding of several pro-inflammatory pathogen associated mi-
crobial patterns (PAMPs): LPS (bacterial endotoxins) [101], unmethylated CpG-containing
DNA [15]; or their receptors: the toll-like receptors (TLRs) [152], it prevents inflammation
and subsequent tissue damage caused by the release of pro-inflammatory cytokines and
reactive oxygen species. The interaction of LF with negatively charged groups present on
the surface of the immune cells activate signaling pathways that induce a physiological
anti-inflammatory reactions [96]. Moreover, by regulating gene expression e.g., by blocking
NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells), lactoferrin may
also modulate cytokine synthesis. It decreases the production of some pro-inflammatory
cytokines, such as tumor necrosis factor α (TNF-α), interleukin 1α (IL-1α) and interleukin
6 (IL-6) or interleukin 8 (IL-8); [150,153] and increases the levels of anti-inflammatory
IL-10 [94]. LF has been demonstrated to neutralize free LPS by disruption the complex
of LPS-binding protein—endotoxin that activate the TLR4 signaling pathway triggering
monocytes and macrophages activation [100,154,155]. During viral infections LF reduces
the synthesis of chemoattractants, such as IL-8 and monocyte chemoattractant protein-1,
minimalizing development of pathology [92]. Finally, by controlling oxidative stress, LF
alters the production of immunoregulatory mediators, that are crucial for the induction
of an adaptive immune response [156] and protects against iron disorders by modulating
immune response and down-regulating pro-inflammatory cytokines, such as IL-6, in vitro
and in vivo models and in clinical trials [156,157].

Immunostimulation

Several mechanisms are involved in the immunomodulating activity of lacto-
ferrin [3,95,96,156,157]. It plays an important role in recruitment, activation and anti-
gen presentation by antigen-presenting cells (APCs), such as monocytes and dendritic
cells [156,158]. LF regulates maturation of DCs, increases their capacity to trigger prolifera-
tion and release IFN-α and decreases antigen internalization [158]. It activates macrophages
to release pro-inflammatory molecules, e.g., TNF-α, IL-8, and nitric oxide [159], and in-
creases their phagocytic activity [95,156]. The lactoferrin-dependent control of proinflam-
matory cytokine expression, represents an important mechanism that results in effects on
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the growth, differentiation, activation, and functions of immune cells [1,3,14,95,96,156,157].
bLF can promote activation of intestinal transcription of some essential genes such as p40,
IL-12 and NOD2, essential for systemic immunity activation [150]. Furthermore, many
in vitro studies reported lactoferrin as a modulator of both cell-mediated and humoral
adaptive immunity triggering: (1) the synthesis of non-specific IgA and IgG antibodies (in
the intestine), [160]; (2) the maturation of B lymphocytes into efficient antigen presenting
cells [4], (3) activation of B, T and NK lymphocytes (in the intestine, spleen and peripheral
blood) [4,115,161,162] (4) differentiation the precursor T cells present in the thymus to ac-
quire the CD4 + CD8- Th helper cell phenotype [98,161]. LF may also enhance the cytotoxic
functions of NK and lymphokine-activated killer cells, potentially through binding to RNA
and DNA [115,161].

3.2.4. Antitumor Action of LF

LF is able to inhibit or activate cell division and movement, depending on whether
it affects cancer cells or healthy normal body cells [158,163]. Administration of LF has
been shown to inhibit or even prevent tumor growth by activating the adaptive immune
response or decreasing the expression of growth factor protein e.g., of vascular endothelial
growth factor protein in human lung cancer cell line—A549 [164]. Moreover, it increases
the expression of surface receptors on neoplastic cells, facilitating their identification by
the immune system [21,97]. Li and colleagues have shown that the anti-cancer activity
of lactoferrin may also be related to its ability to inhibit angiogenesis and the growth
of blood vessels to the tumor [102]. Thanks to this, it reduces the size of tumors and
the possibility of metastasis formation [165]. LF also has a lytic effect on cancer cells.
Importantly, it acts selectively, showing greater cytotoxicity towards neoplastic cells than
normal ones. Furthermore, it was shown that bovine LF exerts a cytotoxic effect on
fibrosarcoma, melanoma, head and neck, as well as colon cancer cells, and inhibits the
proliferation of lung cancer cells [21,102,163,164,166].

It has been shown that lactoferrin cytotoxicity towards cancer cells can occur through
various pathways, not only by the above mentioned inhibition of angiogenesis or induction
of immunoreactivity, but also through cell cycle arrest, cell membrane damage or induction
of apoptosis of dangerous cells.

3.2.5. Cell Cycle Arrest

In humans cell cycle is strictly regulated by hormones, cyclins, cyclin-dependent
kinases and inhibitors of cyclins. It has been revealed that lactoferrin may trigger cell
cycle arrest [21,102,167]. It binds to nucleic acids in the cell and through cell cycle regu-
lation affects the balance of cell proliferative activity as well as may mediate apoptosis
induction [106]. This process is cell type dependent and provides antitumor activity of LF
(Figure 5), as well as likely inhibits bacterial genotoxicity.

bLF has been shown to arrest breast cancer MDA-MB-231 cells at the G2 phase, whereas
MCF-7 cells at the G1 or G2 phase [149] and squamous cell carcinoma, nasopharyngeal
carcinoma cells, human cancer cell line O12, and canine mammary gland adenocarcinoma
cell line at the G1 phase [21,102]. Furthermore, some other studies have demonstrated
that bLF retain growth of breast cancer cells at the G1 and transition of cell cycle to S
phase. Lactoferrin induced cell cycle arrest at the G1 to S phase in due to regulation of cell
cycle-associated proteins including Akt, p21, p19, p27, Cdk2, cyclin E, Cdk4, and cyclin
D1 [103,104,168]. LF could modulate the expression and activity of p21cip1 and p27kip1 due
to modulation of the phosphatidylinositol 3′-kinase/Akt pathway [103,169]. The decrease
of phospho-Akt may be a result of altered availability or stability of insulin-like growth
factor after LF binding [170].

It has been revealed that bLF, in the MDA-MB-231 cells, was able to increase the
level of cyclin-dependent kinase (CdK) inhibitor p21cip1 protein with decrease of proteins
Cdk2, cyclin E, and Cdk4 level, in a p53-independent mechanism [103]. In nasopharyngeal
carcinoma cells, murine squamous cell carcinoma SCCVII, human cancer cell line O12, and
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canine mammary gland adenocarcinoma cell line the expression of p21cip1 and p27kip1 were
up-regulated whereas the expression of cyclin D1 and phosphorylation of retinoblastoma
(Rb) protein was decreased [9]. Interestingly, cell cycle arrest in an oral squamous cell
carcinoma could be induced by bLF via down-regulation phospho-p53 and cyclin D1 and
up-regulation CdK inhibitor p21 levels [104]. The study by Chea et al. [104] demonstrated
that bLF was able to enhance phosphorylation of p53 in HSC3 cells and induce cell cycle
arrest in G0/G1 phase. Activated p53 up-regulate mouse double minute (mdm2) and p21
protein expression, that inhibit cyclin D1 activity [142]. Recently, it has been reported that
bLF reflects a novel and unique properties of cell proliferation regulation in Oral squamous
cell carcinoma (OSCC) via modulation of mTOR/S6K pathway. bLF downregulates the
expression of p-mTOR and in turn p-S6K as well as negatively modulate JAK2/STAT3
signaling pathway via SOCS3 [104].

Figure 5. Modulation of cell cycle by bLF and rhLF demonstrated on the example of different cancer
cells lines. During the cell cycle, LF can inhibit or activate several checkpoint regulators such as:
cyclin-dependent kinase (CDK), and their associated inhibitor partners of the Cip/Kip family proteins
(p21, p27), DNA damage response genes (p53) or mTOR/S6K pathway. In response to bLF and rhLF
cancer target cells arrest in G0/G1 phase (e.g., HSC3 cells, head and neck cancer line), G1/G2 phase
(e.g., OSCC, MDA-MD-231 cells, nasopharyngeal carcinoma cells), G2/M phase (e.g., ALL cells) or S
phase (e.g., MDA-MB-231 cells, A549 cells). Key molecules that lead to cell cycle arrest are indicated
by the red arrows. Illustration was created in BioRender.com (accessed on 21 April 2022).

In addition, it was revealed that bovine LFcin (LFcin-B) blocks cell cycle of CaCo-2
cells, human colon cancer, through prolongation of S phase via down-regulation of cyclin E1
level [105,139]. Whereas delta LF isoform inducts Skp1 (S-phase kinase-associated protein)
and Rb (retinoblastoma) genes. Skp1 is a member of Skp1/Cullin-1/F-box ubiquitin ligase
complex involved in the proteins ubiquitination and degradation via proteasome at the
G1/S transition [147].

BioRender.com
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Furthermore, MDA-MB-231 cells exposed to rhLF (derived from yeast) resulted in the
cell cycle arrest at S phase accompanied by percentage reduction of cells at G0/G1 phase
and increment of cells at S phase [168]. Similarly, adenocarcinomic human alveolar basal
epithelial cells (A549 cells) treated with rhLF but from CHO cells reflects the cell cycle
arrest at S phase. Moreover, rhLF exhibits antileukemia selective cytotoxicity, microfilament
disruption, cell cycle arrest, and apoptosis activities. rhLF-h-glycan causes cell cycle G2/M
arrest and moreover induces DNA fragmentation on ALL cells [167]. Treatment with rhLF
(induced in Aspergillus) has been shown to block head and neck cancer cell lines at the
G0-G1 stage associated with a decrease in the S phase of these cells [107]. The cell cycle
arrest is likely mediated by a decrease in phospho-Akt, followed by increase in p27 and a
reduction in cyclin E and pRb protein levels, regulating further steps required for DNA
synthesis in S phase [107,171].

Moreover recent studies revealed that bLF may inhibit AIEC (adherent-invasive Es-
cherichia coli) -mediated genotoxicity through cell cycle manipulation. AIEC strains are able
to arrest cell cycle of infected cells in the S phase and induce DNA damage [172].

3.2.6. Apoptosis

Apoptosis, as opposed to accidental necrotic death, is the active death of a cell, and
although it can be triggered by the same factors as necrosis, its course is quite different
and requires the active participation of the cell in carrying out this suicidal death. This
type of death is very beneficial to the organism because it does not lead to development
of inflammation and loss of additional cells, but allows for the elimination of cells that
are redundant, damaged or threatening to the body, such as cancer cells [149,173]. For
it to occur, it requires activation of the expression of genes encoding proteins that lead
to the controlled destruction of cellular components, allowing their eventual reuse by
surrounding cells or by migrating resident macrophages/phagocytes, which phagocytose
the resulting apoptotic bodies containing whole intact cellular organelles derived from the
apoptotic cell. Apoptosis is one of the mechanisms that protects against tumorigenesis
by triggering the death process in cells undergoing cancer transformation. Unfortunately,
many cancer cells have mutations in the genes that trigger/guide the apoptosis process.
This leads to the inability of the cell to die and ultimately to the development of a cancerous
tumor [174,175].

LF has been demonstrated to have both anti-apoptotic [176] or pro-apoptotic ef-
fects [114,177]. It may induce cell apoptosis and promote autophagy by regulating the
levels of signaling molecules, including: caspase-3 and caspase-8 activation [178–180],
poly(ADP-ribose) polymerase (PARP) cleavage promotion [179], B-cell lymphoma-2 (Bcl-2)
and Bcl-2 associated X (Bax) proteins expression regulation [178,181], increase Fas expres-
sion [179], and p53 activation [142], as well as autophagy-related gene 7 (Atg7), Atg12-Atg5
and microtubule-associated protein 1 light chain 3 (LC3)-II/LC3-I [182].

Summarize, LF can trigger the Fas signaling or mitochondrial-related or V-H+-ATPase-
related apoptosis pathway [180,183,184], depending on tissue/cell types [113]. It was
shown that bLF induced an increase in the apoptosis of e.g., human breast cancer cell
lines HS578T [108], as well as MDA-MB-231 and MCF-7 [185], stomach cancer cells SGC-
7901, T cells, as well as highly metastatic prostate adenocarcinoma cell line PC-3 and the
osteosarcoma cell line MG-63 containing plasma membrane V-ATPase [186]. The colon
tumor cells exposed to bLF reflects increased sensitivity of extrinsic pathway death receptor
Fas and activation of caspases-3 and −8 [142]. In stomach cancer cells and squamous cell
carcinoma, reduction of protein Bcl-2 level [180] and caspase-3 cleavage [187], respectively,
has been observed.

In addition, LF has been shown to activate caspases-3 and -9 but not caspase-8 in
leukemic and breast carcinoma cells [112,188]; caspases-3, −7, −8 and −9 in gastric can-
cer [113], whereas the apoptosis in B-lymphoma has been induced in a caspase-independent
fashion [109]. In squamous carcinoma cells activation of caspase-3 and stress activated
protein kinases/c-Jun amino-terminal kinase (SAP/JNK) kinase by bLF was revealed [189].
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Furthermore, apo-bLF (iron saturated LF) and holo-bLF (low iron saturated LF) were
reported to induce apoptosis in both MDA-MB-231 and MCF-7 cells through activation of
caspase but via the IAP pathway and the p53 pathway, respectively as well as different
affinity [110]. Interestingly, literature data indicate that LF behaves as a V-H+-ATPase
inhibitor in different model organisms and cell lines [114,117,134,136,190]. bLf selectivity
can prevent growth and metastasis of highly metastatic breast and prostate cancer cells,
as well as osteosarcoma, which exhibit higher expression levels of plasmalemmal V-H+-
ATPase [183,184]. It is worth mentioning that bLF effects on intracellular V-ATPases, was
shown too [111,114]. It has also been shown that holo-LF induced ferroptosis, an iron-
dependent cell death characterized by cellular accumulation of ROS and lipid peroxidation
products, of MDA-MB-231 cells, and promoted ROS generation and DNA damage by
radiotherapy and sensitized MDA-MB-231 tumors to radiotherapy [191].

On the basis of the assessment of events that depend on V-ATPase function, it has been
evaluated that LF can inhibit cell proliferation, induce apoptosis, diminish extracellular
acidification rate, and increase intracellular acidification due to inhibition of the proton
pumping and ATP hydrolytic activities of V-ATPase [184].

Moreover, lactoferrin-induced apoptotic process in yeast, such as C. albicans and S.
cerevisiae, is one of the element of its antifungal activity [192] as well as bacteria, such as Lac-
tococcus lactis and Pseudomonas aeruginosa [184]. Literature data indicate that human lactofer-
rin can induce apoptosis in Candida albicans thrush cells, which includes phosphatidylserine
transformations, nuclear chromatin condensation, DNA damage and excessive produc-
tion of reactive oxygen species (ROS) in mitochondria causing their depolarization [137],
(Figure 6).

On the other side, LF was found to inhibit the apoptosis in osteoblasts and osteoclasts
as well as neutrophils [176]. The anabolic effects of bLF on osteoblasts was observed in vitro
in 50–70% of these cells. Recent studies demonstrate that this inhibition involve the insulin-
like growth factor (IGF) signaling pathway [176]. Furthermore, the delay of neutrophil
apoptosis at sites of infection extend their bactericidal function. The anti-apoptotic effect of
lactoferrin is dependent upon its iron saturation status and is mediated at an early stage of
apoptosis [193].

3.2.7. Antimicrobial Action

The antibacterial activity of lactoferrin is related, among others, to the ability to bind
iron ions, which is required for certain bacteria and fungi growth (Streptococcus, Salmonella,
Shigella, Staphylococcus, Enterobacter and H. pylori) as well as biofilm formation [194]. More-
over, lactoferrin by binding to fimbrial adhesins of bacteria prevents adhesion of pathogens
to epithelial cells of the host intestines. Blocking the stage of bacterial adhesion on the cell
surface prevents them from getting inside the cell and further stages of infection [6]. bLF
inhibits the growth of intestinal pathogens, particularly bacteria of the family Enterobacteri-
aceae, as well as stimulates the growth of intestinal microbiota of the genus Bifidobacterium
or Lactobacillus serving as iron donor [194]. It also contributes to the death of bacteria by
binding to the bacterial cell wall porin protein or LPS triggering the cell walls or membranes
destruction due to increasing their permeability [18]. Moreover, the interactions between LF
and LPS increases susceptibility of Gram-negative bacteria to lysozyme [118]. bLF is able to
increase the susceptibility of bacteria to some antibiotics and thus reduces the therapeutic
dose of the drug, increasing its bactericidal activity [122]. bLF can act as a potent protective
molecule against bacterial-induced genotoxicity triggered by AIEC [172].

The antiviral effect of lactoferrin is primarily due to binding to the host cell’s mem-
brane glycosaminoglycans and preventing viruses invasion into host cells. So far, the
effect of lactoferrin has been confirmed, including herpes virus types 1 and 2, human
cytomegalovirus, human immunodeficiency virus (HIV), human papillomavirus (HPV),
rotavirus, enterovirus, adenovirus, influenza virus, parainfluenza virus, hepatitis C virus
(HCV), hepatitis B virus (HBV) [123,125,127,128] and SARS-CoV-2 [124,126,195–197]. LF
may contribute to defence against different species of Candida by altering its cell wall
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integrity causing surface blebs formation, and finally cell death. Additionally, LF has been
used in synergy with different antifungal drugs against different yeasts such as C. dublin-
iensis, C. albicans, C. glabrata, and Cryptococcus, where their effect was potentiated [137].
In addition, the antimicrobial activity of bLF and elimination of oncogenic pathogens
such as, H. pylori, responsible for the pathology of gastric ulcers, chronic gastritis, gastric
adenocarcinoma and lymphoma, is important for cancer prevention [122].

Figure 6. Overview of the mechanism underlying the apoptotic activity of bLF including activation
of Fas signaling pathway in MDA-MB-231 cells (A), mitochondrial-related pathway in MCF-7 cells
(B) and inhibition of plasmalemmal V-H+-ATPase proton pumping of highly metastatic cancer cells
(V-ATPase), bacteria (F-ATPase) as well as yeast (Pma1p). (A,B) The internalized, Apo-bLF and
Fe-bLF via membrane bound LF receptors in the process of endocytosis, induce or/and inhibit
key apoptotic proteins. (C) The inhibition of proton efflux trigger extracellular alkalinisation and
intracellular acidification. Modulation of key apoptotic molecules level or processes that lead to cell
death are indicated by the red arrows. pHi: intracellular pH; pHlys: lysosomal pH; pHvac: vacuolar
pH; [ATP]i: intracellular ATP concentration; ψpm: plasma membrane potential. Illustration was
created in BioRender.com (accessed on 21 April 2022) based on [110,184].

Furthermore, it has been shown that both human and bovine LF exhibit DNase
and RNase activity because they can bind and hydrolyze nucleic acids, and this process
accelerates in the presence of Mg2+ and Ca2+ ions [6,73]. This catalytic activity of LF alludes
to its protective properties against viruses and bacteria i.e., LF-dependent hydrolysis of the
foreign components of pathogens. Worth noting are molecular dynamics simulation studies
showing that lactoferramine, lactoferricin, and LFchimera, three antimicrobial peptides

BioRender.com
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derived from camel LF, bind to DNA without DNA sequence preference. Electrostatic
interactions between the positively charged side chains of the peptides and the phosphate
groups of DNA were confirmed, and that the binding of four copies of LFchimera to DNA
is sufficient to initiate a hydrogen bond break between two DNA strands [143]. Therefore,
LF-derived peptides can be considered as natural antibiotic formulations, directly targeting
and destroying bacterial DNA.

4. Conclusions

Lactoferrin is a multipotent protein with various properties, which directly and in-
directly affects the immune system of mammals, including humans. Scientists see many
biotechnological and medical solutions in this protein, treating it as a factor reducing the
risk of infections in prosthetics and implantology, and hope in the possibility of developing
new, more effective drug therapies with LF as one of the components of dietary supple-
ments that affect immunity and digestive system and human bacterial flora. Research
reports that colostrum and LF may be important nutraceuticals in the prevention or treat-
ment of many ailments. An additional advantage of LF are the reports of DNA protective
properties, which guarantee further research on this issue and give the perspective of new
therapeutic possibilities in many disease processes with damage to genetic material.
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and K.K. (Katarzyna Kaczyńska); visualization, I.B.-O., P.K., D.S. and K.K. (Katarzyna Kaczyńska);
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Abbreviations

Lactoferrin (LF), inflammatory bowel disease (IBD), Alzheimer’s disease (AD), dry eye disease
(DED), glycosaminoglycans—GAGs, lipoteichoic acid—LTA, lipopolysaccharide—LPS, vinyl chlo-
ride (VC), chloroacetaldehyde (CAA), 1,N6-ethenoadenine (EA), 3,N4-ethenocytosine (EC) and
N2,3-ethenoguanine (EG), Base excision repair (BER), Nucleotide Excision repair (NER), Homol-
ogous Recombinational Repair (HRR), Non-homologous End Joining (NHEJ). Mismatch Repair
(MMR), Fanconi Anemia (FANC), translation synthesis (TLS), reactive oxygen species (ROS), human
immunodeficiency virus (HIV), human papillomavirus (HPV), rotavirus, enterovirus, adenovirus,
influenza virus, parainfluenza virus, hepatitis C virus (HCV), hepatitis B virus (HBV). and KSHV,
mitochondrial DNA—mtDNA, malondialdehyde (MDA) and trans-4-hydroxy-2-nonenal (HNE),
oxygen reaction species (ROS), interleukine 1α (IL-1α), interleukine 6 (IL-6), interleukine-IL-8, (nicoti-
namide adenine dinucleotide phosphate oxidase)-NADPH oxidase, reactive nitrogen species (RNS),
8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxoG), fapyadenine (FapyA) and fapyguanine (FapyG),
formamidopyrimidine [fapy]-DNA glycosylase—Fpg, DNA-3-methyladenine glycosylase—Mpg,
TDG-G/T mismatch-specific thymine DNA glycosylase—Tdg, human recombinant protein—Anpg,
Adenosine 5′-TriPhosphatase—ATPase, tumor necrosis factor α—TNF-α, poly(ADP-ribose) poly-
merase (PARP), B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X (Bax).
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